Publications by authors named "Jeremias Gomes"

Background And Objective: Computerized pathology image analysis is an important tool in research and clinical settings, which enables quantitative tissue characterization and can assist a pathologist's evaluation. The aim of our study is to systematically quantify and minimize uncertainty in output of computer based pathology image analysis.

Methods: Uncertainty quantification (UQ) and sensitivity analysis (SA) methods, such as Variance-Based Decomposition (VBD) and Morris One-At-a-Time (MOAT), are employed to track and quantify uncertainty in a real-world application with large Whole Slide Imaging datasets - 943 Breast Invasive Carcinoma (BRCA) and 381 Lung Squamous Cell Carcinoma (LUSC) patients.

View Article and Find Full Text PDF

Digital pathology imaging enables valuable quantitative characterizations of tissue state at the sub-cellular level. While there is a growing set of methods for analysis of whole slide tissue images, many of them are sensitive to changes in input parameters. Evaluating how analysis results are affected by variations in input parameters is important for the development of robust methods.

View Article and Find Full Text PDF

The Irregular Wavefront Propagation Pattern (IWPP) is a core computing structure in several image analysis operations. Efficient implementation of IWPP on the Intel Xeon Phi is difficult because of the irregular data access and computation characteristics. The traditional IWPP algorithm relies on atomic instructions, which are not available in the SIMD set of the Intel Phi.

View Article and Find Full Text PDF

We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel Xeon Phi co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP's irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance.

View Article and Find Full Text PDF