Publications by authors named "Jeremiah van Baren"

We report the observation of QΓ intervalley exciton in bilayer WSe devices encapsulated by boron nitride. The QΓ exciton resides at ∼18 meV below the QK exciton. The QΓ and QK excitons exhibit different Stark shifts under an out-of-plane electric field due to their different interlayer dipole moments.

View Article and Find Full Text PDF

Exciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe and WSe gating devices encapsulated by boron nitride.

View Article and Find Full Text PDF

Moiré superlattices formed by van der Waals materials can support a wide range of electronic phases, including Mott insulators, superconductors and generalized Wigner crystals. When excitons are confined by a moiré superlattice, a new class of exciton emerges, which holds promise for realizing artificial excitonic crystals and quantum optical effects. When such moiré excitons are coupled to charge carriers, correlated states may arise.

View Article and Find Full Text PDF

Excitons and trions (or exciton polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe_{2}.

View Article and Find Full Text PDF

We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe_{2} under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton polarons) as well as the dark trions and their phonon replicas. Our results reveal spin- and valley-polarized Landau levels (LLs) with filling factors n=+0, +1 in the bottom conduction band and n=-0 to -6 in the top valence band, including the Berry-curvature-induced n=±0 LLs of massive Dirac fermions.

View Article and Find Full Text PDF

Monolayer WSe_{2} is an intriguing material to explore dark exciton physics. We have measured the photoluminescence from dark excitons and trions in ultraclean monolayer WSe_{2} devices encapsulated by boron nitride. The dark trions can be tuned continuously between negative and positive trions with electrostatic gating.

View Article and Find Full Text PDF