Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations.
View Article and Find Full Text PDFThe Environmental Protection Agency's definition of "Green Chemistry" is "the design of chemical products and processes that reduces or eliminates the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal." Conventional omic tissue extraction procedures use solvents that are toxic and carcinogenic, such as chloroform and methyl-tert-butyl ether for lipidomics, or caustic chaotropic solutions for genomics and transcriptomics, such as guanidine or urea.
View Article and Find Full Text PDFChem Commun (Camb)
February 2016
Ambient light stable 3-trifluoromethyl-3-aryldiazirine photolabels are developed via stabilization of the strained three membered diazirine ring by replacing the phenyl ring with electron withdrawing heterocyclic rings. Photolabeling studies reveal that these ambient light stable photolabels are equally efficient in photolabeling target proteins as the traditional 3-trifluoromethyl-3-phenyldiazirine and found to significantly increase the aqueous solubility of the photoaffinity labels.
View Article and Find Full Text PDFWe employ stable-isotope labeling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast, the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.
View Article and Find Full Text PDFWe report the design, synthesis, characterization and evaluation of a novel class of γ-AApeptide one-bead-one-compound (OBOC) library, from which a small γ-AApeptide was identified to effectively prevent and disassemble Aβ aggregation.
View Article and Find Full Text PDFCellular senescence, an irreversible cell cycle arrest induced by a diversity of stimuli, has been considered as an innate tumor suppressing mechanism with implications and applications in cancer therapy. Using a targeted proteomics approach, we show that fibroblasts induced into senescence by expression of oncogenic Ras exhibit a decrease of global acetylation on all core histones, consistent with formation of senescence-associated heterochromatic foci. We also detected clear increases in repressive markers (e.
View Article and Find Full Text PDFWe have developed a targeted method to quantify all combinations of methylation on an H3 peptide containing lysines 27 and 36 (H3K27-K36). By using stable isotopes that separately label the histone backbone and its methylations, we tracked the rates of methylation and demethylation in myeloma cells expressing high vs. low levels of the methyltransferase MMSET/WHSC1/NSD2.
View Article and Find Full Text PDFCurrent high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis.
View Article and Find Full Text PDFAs the process of top-down mass spectrometry continues to mature, we benchmark the next installment of an improving methodology that incorporates a tube-gel electrophoresis (TGE) device to separate intact proteins by molecular mass. Top-down proteomics is accomplished in a robust fashion to yield the identification of hundreds of unique proteins, many of which correspond to multiple protein forms. The TGE platform separates 0-50 kDa proteins extracted from the yeast proteome into 12 fractions prior to automated nanocapillary LC-MS/MS in technical triplicate.
View Article and Find Full Text PDFA full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This 'bottom-up' process affords a high number of identifications (not always unique to a single gene).
View Article and Find Full Text PDFValence parity provides a way to distinguish between N-terminal and C-terminal electron capture dissociation/electron transfer dissociation (ECD/ETD) product ions based on their number of hydrogen plus nitrogen atoms determined by accurate mass measurement and forms a basis for de novo peptide sequencing. The effect of mass accuracy (0.1-1 ppm error) on c'/z(•) overlap and unique elemental composition overlap is evaluated for a database of c'/z(•) product ions each based on all possible amino acid combinations and four subset databases containing the same c' ions but with z(•) ions determined by in silico digestion with trypsin, Glu-C, Lys-C, or chymotrypsin.
View Article and Find Full Text PDFThe diverse proteome of an organism arises from such events as single nucleotide substitutions at the DNA level, different RNA processing, and dynamic enzymatic post-translational modifications. This minireview focuses on the measurement of intact proteins to describe the diversity found in proteomes. The field of biological mass spectrometry has steadily advanced, enabling improvements in the characterization of single proteins to proteins derived from cells or tissues.
View Article and Find Full Text PDFHumic substances and related material commonly grouped under the designation of natural organic matter (NOM) are of interest in fields ranging from marine chemistry and geochemistry to industry, agriculture, and pharmacology. High-field Fourier transform ion cyclotron resonance mass spectrometry enables resolution and identification of elemental compositions of up to thousands of components from a single mass spectrum. Here, we introduce an offline prefractionation to reduce the number of species of the same nominal (nearest-integer) mass, allowing for isolation of ions of one or a few m/z values, from which structural information can be obtained by low-resolution multistage tandem mass spectrometry (MS(n)).
View Article and Find Full Text PDFElectrospray ionization produces multiply charged ions, thereby lowering the mass-to-charge ratio for peptides and small proteins to a range readily accessed by quadrupole ion trap, orbitrap, and ion cyclotron resonance (ICR) mass analyzers (m/z = 400-2000). For Fourier transform mass analyzers (orbitrap and ICR), higher charge also improves signal-to-noise ratio, mass resolution, and mass accuracy. Addition of m-nitrobenzyl alcohol (m-NBA) or sulfolane has previously been shown to increase the charge states of proteins.
View Article and Find Full Text PDFBackground: Protein conformation and protein/protein interaction can be elucidated by solution-phase Hydrogen/Deuterium exchange (sHDX) coupled to high-resolution mass analysis of the digested protein or protein complex. In sHDX experiments mutant proteins are compared to wild-type proteins or a ligand is added to the protein and compared to the wild-type protein (or mutant). The number of deuteriums incorporated into the polypeptides generated from the protease digest of the protein is related to the solvent accessibility of amide protons within the original protein construct.
View Article and Find Full Text PDFSelenomethionine-modified proteins can improve X-ray crystallographic structural resolution by multi-wavelength anomalous diffraction (MAD) phasing. However, the specificity and extent of selenomethionine incorporation must first be assessed. Bottom-up and top-down proteomics with a modified 14.
View Article and Find Full Text PDFHuman purine nucleoside phosphorylase (PNP) is a homotrimer binding tightly to the transition state analogues Immucillin-H (ImmH; K(d) = 56 pM) and DATMe-ImmH-Immucillin-H (DATMe-ImmH; K(d) = 8.6 pM). ImmH binds with a larger entropic penalty than DATMe-ImmH, a chemically more flexible inhibitor.
View Article and Find Full Text PDFFor fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The "GELFrEE" (i.e.
View Article and Find Full Text PDFThe GM2 activator protein (GM2AP) is an 18 kDa nonenzymatic accessory protein involved in the degradation of neuronal gangliosides. Genetic mutations of GM2AP can disrupt ganglioside catabolism and lead to deadly lysosomal storage disorders. Crystallography of wild-type GM2AP reveals 4 disulfide bonds and multiple conformations of a flexible loop region that is thought to be involved in lipid binding.
View Article and Find Full Text PDFSolution-phase hydrogen/deuterium exchange (HDX) monitored by high-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry offers a rapid method to study protein conformations and protein-protein interactions. Pepsin is usually used to digest proteins in HDX and is known for lack of cleavage specificity. To improve digestion efficiency and specificity, we have optimized digestion conditions and cleavage preferences for pepsin and protease type XIII from Aspergillus saitoi.
View Article and Find Full Text PDF2-Hydroxymethylphenylboronate is described as a reagent that converts neutral 1,2-diols, as found in simple carbohydrates, into 1:1 anionic complexes that are easily detected by Fourier transform ion cyclotron resonance mass spectrometry. The value of this reagent was demonstrated through its application to analyze complex mixtures of carbohydrates formed in the formose process, often cited as a way that biologically significant carbohydrates might have been generated from formaldehyde under prebiotic conditions. Coupled with isotope studies, the reagent shows that the simplest autocatalytic cycle for the consumption of formaldehyde in this process cannot account for the bulk consumption of formaldehyde.
View Article and Find Full Text PDF