Dysregulation of master regulator c-MYC (MYC) plays a central role in hepatocellular carcinoma (HCC) and other cancers but remains an elusive target for therapeutic intervention. MYC expression is epigenetically modulated within naturally occurring DNA loop structures, Insulated Genomic Domains (IGDs). We present a therapeutic approach using an epigenomic controller (EC), a programmable epigenomic mRNA medicine, to precisely modify MYC IGD sub-elements, leading to methylation of MYC regulatory elements and durable downregulation of MYC mRNA transcription.
View Article and Find Full Text PDFmRNA based therapies hold great promise for the treatment of genetic diseases. However, this therapeutic approach suffers from multiple challenges including the short half-life of exogenously administered mRNA and subsequent protein production. Modulation of untranslated regions (UTR) represents one approach to enhance both mRNA stability and translation efficiency.
View Article and Find Full Text PDFMessenger RNA (mRNA) is a promising new class of therapeutics that has potential for treatment of diseases in fields such as immunology, oncology, vaccines, and inborn errors of metabolism. mRNA therapy has several advantages over DNA-based gene therapy, including the lack of the need for nuclear import and transcription, as well as limited possibility of genomic integration. One drawback of mRNA therapy, especially in cases such as metabolic disorders where repeated dosing will be necessary, is the relatively short in vivo half-life of mRNA (∼6-12 h).
View Article and Find Full Text PDFGlycogen storage disease type Ia (GSD1a) is an inherited metabolic disorder caused by the deficiency of glucose-6-phosphatase (G6Pase). GSD1a is associated with life-threatening hypoglycemia and long-term liver and renal complications. We examined the efficacy of mRNA-encoding human G6Pase in a liver-specific G6Pase mouse model (L-G6PC) that exhibits the same hepatic biomarkers associated with GSD1a patients, such as fasting hypoglycemia, and elevated levels of hepatic glucose-6-phosphate (G6P), glycogen, and triglycerides.
View Article and Find Full Text PDFA systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2015
Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates.
View Article and Find Full Text PDFEnzyme function prediction remains an important open problem. Though structure-based modeling, such as metabolite docking, can identify substrates of some enzymes, it is ill-suited to reactions that progress through a covalent intermediate. Here we investigated the ability of covalent docking to identify substrates that pass through such a covalent intermediate, focusing particularly on the haloalkanoate dehalogenase superfamily.
View Article and Find Full Text PDFCatalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy.
View Article and Find Full Text PDFParasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery.
View Article and Find Full Text PDFPredicting substrates for enzymes of unknown function is a major postgenomic challenge. Substrate discovery, like inhibitor discovery, is constrained by our ability to explore chemotypes; it would be expanded by orders of magnitude if reactive sites could be probed with fragments rather than fully elaborated substrates, as is done for inhibitor discovery. To explore the feasibility of this approach, substrates of six enzymes from three different superfamilies were deconstructed into 41 overlapping fragments that were tested for activity or binding.
View Article and Find Full Text PDFA Type 4b secretion system (T4bSS) is required for Legionella growth in alveolar macrophages. IcmQ associates with IcmR, binds to membranes, and has a critical role in the T4bSS. We have now solved a crystal structure of IcmR-IcmQ to further our understanding of this complex.
View Article and Find Full Text PDFVillin headpiece (HP67) is a small, autonomously-folding domain that has become a model system for understanding the fundamental tenets governing protein folding. In this communication, we explore the role that Leu61 plays in the structure and stability of the construct. Deletion of Leu61 results in a completely unfolded protein that cannot be expressed in Escherichia coli.
View Article and Find Full Text PDFVillin headpiece is a small autonomously folding protein that has emerged as a model system for understanding the fundamental tenets governing protein folding. In this communication, we employ NMR and X-ray crystallography to characterize a point mutant, H41F, which retains actin-binding activity, is more thermostable but, interestingly, does not exhibit the partially folded intermediate observed of either wild-type or other similar point mutants.
View Article and Find Full Text PDFThe explosion of protein sequence information requires that current strategies for function assignment evolve to complement experimental approaches with computationally based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown haloalkanoate dehalogenase superfamily member BT2127 (Uniprot accession code Q8A5 V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics-structure-mechanism approach.
View Article and Find Full Text PDFEarly developmental treatment of rats with 3,4-methylenedioxymethamphetamine (MDMA) was previously found to cause an abnormal pattern of forebrain serotonergic axon density in adulthood consisting of a cortical hypoinnervation and a striatal hyperinnervation. The present study tested the hypothesis that this reorganization was due to regional differences in brain-derived neurotrophic factor (BDNF) expression. Rats received MDMA (10 mg/kg, s.
View Article and Find Full Text PDFDuring infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association.
View Article and Find Full Text PDF