Publications by authors named "Jeremiah C Beam"

We report the synthesis, structure, and redox behavior of the cation-ordered tetragonal ScVO defect fluorite superstructure previously thought to be the oxygen precise ABO phase. Four synthesis routes in oxidative, reductive, and inert atmospheres are demonstrated. and powder X-ray and neutron diffraction analyses reveal vanadium disproportionation reactions.

View Article and Find Full Text PDF

Oxide materials that adopt the garnet-type structure (XABO) have received attention for a wide variety of applications, one of which is as potential wasteforms for the sequestration of radioactive actinide elements. The actinides are able to be accommodated in the eight-coordinate X site of the garnet structure. This study focuses on the investigation of Ce substitution into the X site as a surrogate for Pu because of their similar chemical properties.

View Article and Find Full Text PDF

A new 1-step method for synthesizing glass-ceramic composites consisting of rare earth phosphates (REPO) dispersed in borosilicate glass (BG) is reported herein as an alternative to the 2-step approach that is traditionally used. The effect of annealing time and annealing temperature on the formation of the 1-step glass-ceramic composites was investigated. Backscattered electron images and energy dispersive X-ray maps were collected to observe the morphology and chemical distribution in the glass-ceramic composites.

View Article and Find Full Text PDF

The interface between photoactive biological materials with two distinct semiconducting electrodes is challenging both to develop and analyze. Building off of our previous work using films of photosystem I (PSI) on p-doped silicon, we have deposited a crystalline zinc oxide (ZnO) anode using confined-plume chemical deposition (CPCD). We demonstrate the ability of CPCD to deposit crystalline ZnO without damage to the PSI biomaterial.

View Article and Find Full Text PDF

Deaggregation of oxidized ultradispersed diamond (UDD) in dimethylsulfoxide followed by reaction with glycidol monomer, purification via aqueous dialysis, and dispersion in ethylene glycol (EG) base fluid affords nanodiamond (ND)-poly(glycidol) polymer brush:EG nanofluids exhibiting 12% thermal conductivity enhancement at a ND loading of 0.9 vol %. Deaggregation of UDD in the presence of oleic acid/octane followed by dispersion in light mineral oil and evaporative removal of octane gives ND·oleic acid:mineral oil dispersions exhibiting 11% thermal conductivity enhancement at a ND loading of 1.

View Article and Find Full Text PDF