Cisheteronormative ideologies are infused into every aspect of society, including undergraduate science. We set out to identify the extent to which students can identify cisheteronormative language in biology textbooks by posing several hypothetical textbook questions and asking students to modify them to make the language more accurate (defined as "correct; precise; using language that applies to all people"). First, we confirmed that textbooks commonly use language that conflates or confuses sex and gender.
View Article and Find Full Text PDFTraditional biology curricula depict science as an objective field, overlooking the important influence that human values and biases have on what is studied and who can be a scientist. We can work to address this shortcoming by incorporating into the curriculum, which is an understanding of biases, stereotypes, and assumptions that shape contemporary and historical science. We surveyed a national sample of lower-level biology instructors to determine 1) why it is important for students to learn science, 2) the perceived educational value of ideological awareness in the classroom, and 3) hesitancies associated with ideological awareness implementation.
View Article and Find Full Text PDFA growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge.
View Article and Find Full Text PDFThe global spread of the novel coronavirus first reported in December 2019 led to drastic changes in the social and economic dynamics of everyday life. Nationwide, racial, gender, and geographic disparities in symptom severity, mortality, and access to health care evolved, which impacted stress and anxiety surrounding COVID-19. On university campuses, drastic shifts in learning environments occurred as universities shifted to remote instruction, which further impacted student mental health and anxiety.
View Article and Find Full Text PDFSpatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5-12 yr of data on 1,447 plant species from 49 grasslands on five continents, we show that local abundance and species persistence under ambient conditions are both effective predictors of local extinction risk following experimental exclusion of grazers or addition of nutrients; persistence was a more powerful predictor than local abundance.
View Article and Find Full Text PDFEcosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities.
View Article and Find Full Text PDFPlant diversity and plant-consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosystem respiration (R ) and net ecosystem exchange (NEE). Increasing plant diversity increased plant biomass, GPP and R , but NEE remained unchanged.
View Article and Find Full Text PDFFoliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within-host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition.
View Article and Find Full Text PDFTextbooks shape teaching and learning in introductory biology and highlight scientists as potential role models who are responsible for significant discoveries. We explore a potential demographic mismatch between the scientists featured in textbooks and the students who use textbooks to learn core concepts in biology. We conducted a demographic analysis by extracting hundreds of human names from common biology textbooks and assessing the binary gender and race of featured scientists.
View Article and Find Full Text PDFPremise: Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition.
View Article and Find Full Text PDFHemiparasitic plants increase plant biodiversity by reducing the abundance of dominant plant species, allowing for the establishment of subordinate species. Hemiparasites reduce host resources by directly removing nutrients from hosts, competing for light and space, and may indirectly reduce host resources by disrupting plant associations with symbiotic root fungi, like arbuscular mycorrhizal fungi and dark-septate endophytes. Here, we explored how a generalist hemiparasite, , influences plant richness, evenness, community composition, and mycorrhizal colonization patterns across a ∼1,000 m elevational gradient in the North American Rocky Mountains.
View Article and Find Full Text PDFThe Andean Puna is an arid, high-elevation plateau in which plants such as grasses experience high abiotic stress and distinctive environmental conditions. We assessed colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in the roots of 20 native grass species and examined the relationship between root-associated fungi (AMF and DSE) as a function of the elevation of study sites, the photosynthetic pathways of the grass hosts, and the hosts' life cycles. In general, grasses were co-colonized by AMF and DSE and the colonization by AMF and DSE was not extensive.
View Article and Find Full Text PDFMacroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients.
View Article and Find Full Text PDFPlant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the root microbiome, influenced plant phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis.
View Article and Find Full Text PDFThe biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. The Populus root microbiome is a diverse community that has high abundance of β- and γ-Proteobacteria, both classes which include multiple plant-growth promoting representatives. To understand the contribution of individual microbiome members in a community, we studied the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions.
View Article and Find Full Text PDFEcosystems containing multiple nonnative plant species are common, but mechanisms promoting their co-occurrence are understudied. Plant-soil interactions contribute to the dominance of singleton species in nonnative ranges because many nonnatives experience stronger positive feedbacks relative to co-occurring natives. Plant-soil interactions could impede other nonnatives if an individual nonnative benefits from its soil community to a greater extent than its neighboring nonnatives, as is seen with natives.
View Article and Find Full Text PDF