Prescription Produce Programs (PPPs) are increasingly being used to address food insecurity and healthy diets. Yet, limited evidence exists on the effectiveness of integrating lifestyle counseling within a PPP to promote dietary and health behaviors. To describe the implementation of a 6- or 12-week PPP integrating lifestyle counseling to low-income adults.
View Article and Find Full Text PDFNursing students participated in an interprofessional student-led prescription produce program (PPP) serving low-income older adults attending a community-based wellness and care coordination program. Students engaged in an online training module covering nutrition education and health promotion, integral components of a PPP. Ninety-five percent of students self-rated themselves as somewhat confident/very confident to participate in the PPP after completing an online learning module.
View Article and Find Full Text PDFAging adults experience increased health vulnerability and compromised abilities to cope with stressors, which are the clinical manifestations of frailty. Frailty is complex, and efforts to identify biomarkers to detect frailty and pre-frailty in the clinical setting are rarely reproduced across cohorts. We developed a predictive model incorporating biological and clinical frailty measures to identify robust biomarkers across data sets.
View Article and Find Full Text PDFRationale & Objective: Despite many studies suggesting beneficial innovations for patients, few make it into clinical practice. This study aims to enhance patient care by facilitating effective dissemination of patient-centered outcomes research to health care workers in outpatient dialysis facilities, aided by the Patient-Centered Outcomes Research Institute's (PCORI) dissemination and implementation framework.
Study Design: Dissemination and implementation project.
Proc Natl Acad Sci U S A
March 2020
In plants and mammals, DNA methylation plays a critical role in transcriptional silencing by delineating heterochromatin from transcriptionally active euchromatin. A homeostatic balance between heterochromatin and euchromatin is essential to genomic stability. This is evident in many diseases and mutants for heterochromatin maintenance, which are characterized by global losses of DNA methylation coupled with localized ectopic gains of DNA methylation that alter transcription.
View Article and Find Full Text PDFIn many plant species, a subset of transcribed genes are characterized by strictly CG-context DNA methylation, referred to as gene body methylation (gbM). The mechanisms that establish gbM are unclear, yet flowering plant species naturally without gbM lack the DNA methyltransferase, CMT3, which maintains CHG (H = A, C, or T) and not CG methylation at constitutive heterochromatin. Here, we identify the mechanistic basis for gbM establishment by expressing in a species naturally lacking expression reconstituted gbM through a progression of de novo CHG methylation on expressed genes, followed by the accumulation of CG methylation that could be inherited even following loss of the transgene.
View Article and Find Full Text PDFIn plants, nuclear multisubunit RNA polymerases IV and V are RNA Polymerase II-related enzymes that synthesize non-coding RNAs for RNA-directed DNA methylation (RdDM) and transcriptional gene silencing. Here, we tested the importance of the C-terminal domain (CTD) of Pol IV's largest subunit given that the Pol II CTD mediates multiple aspects of Pol II transcription. We show that the CTD is dispensable for Pol IV catalytic activity and Pol IV termination-dependent activation of RNA-DEPENDENT RNA POLYMERASE 2, which partners with Pol IV to generate dsRNA precursors of the 24 nt siRNAs that guide RdDM.
View Article and Find Full Text PDFIn flowering plants, gene body methylation (gbM) is associated with a subset of constitutively expressed genes. It has been proposed that gbM modulates gene expression. Here, we show that there are no consistent and direct differences to expression following the loss of gbM.
View Article and Find Full Text PDFPlants encode a diverse repertoire of DNA methyltransferases that have specialized to target cytosines for methylation in specific sequence contexts. These include the de novo methyltransferase, DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which methylates cytosines in all sequence contexts through an RNA-guided process, the CHROMOMETHYLASES (CMTs), which methylate CHH and CHG cytosines (where H is A, T, or C), and METHYLTRANSFERASE 1 (MET1), which maintains methylation of symmetrical CG contexts. In this review, we discuss the sequence specificities and targeting of each of these pathways.
View Article and Find Full Text PDFPlant multisubunit RNA polymerase V (Pol V) transcription recruits Argonaute-small interfering RNA (siRNA) complexes that specify sites of RNA-directed DNA methylation (RdDM) for gene silencing. Pol V's largest subunit, NRPE1, evolved from the largest subunit of Pol II but has a distinctive C-terminal domain (CTD). We show that the Pol V CTD is dispensable for catalytic activity in vitro yet essential in vivo.
View Article and Find Full Text PDFIn many eukaryotes, siRNAs bound to Argonaute proteins guide chromatin-modifying enzymes to complementary loci, resulting in transcriptional gene silencing. Multiple lines of evidence indicate that siRNAs base-pair with longer RNAs produced at target loci, but the possibility that siRNAs base-pair directly with DNA remains an attractive hypothesis. In a recent study, Shimada et al.
View Article and Find Full Text PDFRNA-directed chromatin modification that includes cytosine methylation silences transposable elements in both plants and mammals, contributing to genome defense and stability. In Arabidopsis thaliana, most RNA-directed DNA methylation (RdDM) is guided by small RNAs derived from double-stranded precursors synthesized at cytosine-methylated loci by nuclear multisubunit RNA Polymerase IV (Pol IV), in close partnership with the RNA-dependent RNA polymerase, RDR2. These small RNAs help keep transposons transcriptionally inactive.
View Article and Find Full Text PDFToxoplasma gondii, a zoonotic protozoal parasite, is well-known for its global distribution and its ability to infect virtually all warm-blooded vertebrates. Nonetheless, attempts to describe the population structure of T. gondii have been primarily limited to samples isolated from humans and domesticated animals.
View Article and Find Full Text PDFYersinia pestis initiates infection as a facultative intracellular parasite in host macrophages; however, little is known about the efficacy of antibiotics commonly used to treat human plague against intracellular Y. pestis. Intracellular minimal bactericidal concentrations (MBCs) were determined using a high-throughput broth microdilution assay in which human THP-1 macrophage-like cells were infected with Y.
View Article and Find Full Text PDFTissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating.
View Article and Find Full Text PDFBrucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries.
View Article and Find Full Text PDF