Publications by authors named "Jered Garrison"

The release of actinides into the environment represents a significant potential public health concern. Chelation therapy utilizing diethylenetriamine pentaacetate (DTPA) is a U.S.

View Article and Find Full Text PDF

Many low-molecular weight targeted radiotherapeutics (TRTs) are capable of rapidly achieving exceptional tumor to non-target ratios shortly after administration. However, the low tumor residence time of many TRTs limits therapeutic dose delivery and has become the Achilles heel to their clinical translation. To combat the tumor efflux of these otherwise promising agents, we have previously presented a strategy of equipping low-molecular weight TRTs with irreversible cysteine cathepsin inhibitors (e.

View Article and Find Full Text PDF

Our laboratory has previously reported a strategy of employing cysteine cathepsin (CC) inhibitors as adduct forming, trapping agents to extend the tumor residence time of neurotensin receptor subtype 1 (NTSR1)-targeted radiopharmaceuticals. As a follow-up, we herein report a small library of CC trapping agent (CCTA)-incorporated, NTSR1-targeted conjugates with structural modifications that reduce the number of charged functional groups for both the CCTA and the peptide targeting sequence. These modifications were pursued to reduce the renal uptake and increase the translational potential of the CCTA-incorporated, NTSR1-targeted agents as radiotherapeutics.

View Article and Find Full Text PDF

Synthesis of highly strained fused substituted dihydrobenzopyran cyclopropyl lactones derived from coumarin carboxylates are reported. The substrate scope tolerates a variety of 6- and 8-substituents on the coumarin ring. Substitution at the 5- or 7-position is resistant to tricyclic lactone formation except with 7-methyl substitution.

View Article and Find Full Text PDF

Genetic models validated Inhibitor of nuclear factor (NF) kappa B kinase beta (IKKβ) as a therapeutic target for KRAS mutation associated pancreatic cancer. Phosphorylation of the activation loop serine residues (S, S) in IKKβ is a key event that drives tumor necrosis factor (TNF) α induced NF-κB mediated gene expression. Here we conducted structure activity relationship (SAR) study to improve potency and oral bioavailability of a quinoxaline analog 13-197 that was previously reported as a NFκB inhibitor for pancreatic cancer therapy.

View Article and Find Full Text PDF

Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we have reported the design and synthesis of a series of dinitrobenzamide mustards (DNBM) based on the PR-104A hypoxia-selective prodrug. Specifically, we explored the impact of various leaving groups and the introduction of a carboxylic acid group on the biological performance of the DNBM constructs.

View Article and Find Full Text PDF

Purpose: The development of diagnostic and therapeutic agents utilizing small peptides (e.g., bombesin (BBN)) to target the overexpression of the gastrin-releasing peptide receptor (GRPR) in cancers has been widely investigated.

View Article and Find Full Text PDF

From the viewpoint of inorganic crystal engineering (ICE), the coordination sphere of the metal centre can be affected by two main parts of inorganic and organic units in complexes. Database study can play a significant role in the explanation of the relationship between various parameters related to these parts. For the first time, we have investigated this relationship through the concomitant studies of the inorganic crystal structure database (ICSD) and the cambridge structural database (CSD) for mercury(ii) halide compounds.

View Article and Find Full Text PDF

A diverse series of 1,2,4-oxadiazoles based substituted compounds were designed, synthesized and evaluated as anticancer agents targeting carbonic anhydrase IX (CAIX). Initial structure-activity analysis suggested that the thiazole/thiophene-sulfonamide conjugates of 1,2,4-oxadiazoles exhibited potent anticancer activities with low μM potencies. Compound OX12 exhibited antiproliferative activity (IC = 11.

View Article and Find Full Text PDF

1-Substituted and 1,1-disubstituted tetrahydro-β-carbolines undergo sodium periodate oxidative ring expansion in the presence of formaldehyde and other aldehydes to form 5,6-dihydro-7-1,4-methanobenzo[][1,4]diazonine-2,7(3)-diones in 30-81% yield. In most cases, the reaction to form this new 6/8/5-tricyclic ring system proceeds with high diastereoselectivity. These benzannulated medium-ring keto imidazolidin-4-ones expand the menu of tetrahydro-β-carboline oxidation products.

View Article and Find Full Text PDF

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) has improved the quality and duration of life for people living with human immunodeficiency virus (HIV) infection. However, limitations in drug efficacy, emergence of viral mutations and the paucity of cell-tissue targeting remain. We posit that to maximize ART potency and therapeutic outcomes newer drug formulations that reach HIV cellular reservoirs need be created.

View Article and Find Full Text PDF

Receptor-targeted radiopharmaceuticals based on low-molecular-weight carriers offer many clinically advantageous attributes relative to macromolecules but have generally been hampered by their rapid clearance from tumors, thus diminishing tumor-to-nontarget tissue ratios. Herein, we present a strategy using irreversible inhibitors (E-64 derivative) of cysteine cathepsins (CCs) as trapping agents to increase the tumor retention of receptor-targeted agents. We incorporated these CC-trapping agents into agonistic and antagonistic pharmacophores targeting the gastrin-releasing peptide receptor (GRPR).

View Article and Find Full Text PDF

The gastrin-releasing peptide receptor (BB2r) is overexpressed in a variety of cancers including prostate cancer. As a consequence, the development of BB2r-targeted diagnostic/therapeutic radiopharmaceuticals has been widely explored. Both subcutaneous and orthotopic mouse models have been extensively used in BB2r-targeted agent development, but side-by-side studies examining how biological parameters (tumor perfusion efficacy, hypoxic burden and microvasculature density) impact BB2r-targeted agent delivery has not been reported.

View Article and Find Full Text PDF

We explored the approach of using an analog of E-64, a well-known and hydrophilic cysteine cathepsin (CC) inhibitor, as a potent cysteine cathepsin-trapping agent (CCTA) to improve the tumor retention of low-molecular-weight, receptor-targeted radiopharmaceuticals. The synthesized hydrophilic CCTA-incorporated, NTSR1-targeted agents demonstrated a substantial increase in cellular retention upon uptake into the NTRS1-positive HT-29 human colon cancer cell line. Similarly, biodistribution studies using HT-29 xenograft mice revealed a significant and substantial increase in tumor retention for the CCTA-incorporated, NTSR1-targeted agent.

View Article and Find Full Text PDF

The present study describes the synthesis of 1,2,3-triazole-quinazolinone conjugates (5a-q) from ethyl 4-oxo-3-(prop-2-ynyl)-3,4-dihydroquinazoline-2-carboxylate and phenyl azide/substituted phenyl azides employing Cu(i) catalysed Huisgen 1,3-dipolar cycloaddition. The corresponding acids (6a-q) were obtained by hydrolysis of esters (5a-q) to study the effect of these functionalities on the biological activity. All synthesized compounds were screened for anticandidal evaluation against , and strains.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir.

View Article and Find Full Text PDF

We report a strategy of utilizing irreversible cysteine cathepsin inhibitor as trapping agent to increase the tumor residence time of receptor-targeted agents. The targeted constructs incorporating these cysteine cathepsin trapping agents were able to form high molecular weight adducts with intracellular cysteine cathepsins, thus achieving superior retention in tumor tissues.

View Article and Find Full Text PDF

We describe a new 1-[Bis(dimethylamino)methylene]-1-1,2,3-triazolo[4,5-]pyridinium 3-oxide hexafluorophosphate (HATU)-mediated coupling reaction to produce 2-imino benzo[]-1,3-oxazin-4-ones from salicylic acids and anilines. Mechanistic studies support a reaction pathway in which HATU mediates carbon transfer to the initially formed salicylanilides to form in succession reactive tetramethylisouronium and -acyl(dimethyl)isouronium intermediates, which then undergo imine-iminium exchange to generate the desired oxazinones.

View Article and Find Full Text PDF

EPAC proteins are therapeutic targets for the potential treatment of cardiac hypertrophy and cancer metastasis. Several laboratories use a tetrahydroquinoline analog, CE3F4, to dissect the role of EPAC1 in various disease states. Here, we report SAR studies with tetrahydroquinoline analogs that explore various functional groups.

View Article and Find Full Text PDF

Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we synthesized an alkyne functionalized version of evofosfamide, a hypoxia-selective prodrug. The purpose of this effort was to investigate if this novel 2-nitroimidazole phosphoramide nitrogen mustard (2-NIPAM) retained hypoxia selectivity and could be utilized in radiopharmaceutical development to significantly increase retention of conjugated agents in hypoxic cells.

View Article and Find Full Text PDF

Proteins involved in iron homeostasis have been identified as biomarkers for lupus nephritis, a serious complication of systemic lupus erythematosus (SLE). We tested the hypothesis that renal iron accumulation occurs and contributes to renal injury in SLE. Renal non-heme iron levels were increased in the (New Zealand Black x New Zealand White) F1 (NZB/W) mouse model of lupus nephritis compared with healthy New Zealand White (NZW) mice in an age- and strain-dependent manner.

View Article and Find Full Text PDF

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers have been studied as an efficient carrier for drug delivery and tumor imaging. However, as with many macromolecular platforms, the substantial accumulation of HPMA copolymer by the mononuclear phagocyte system (MPS)-associated tissues, such as the blood, liver, and spleen, has inhibited its clinical translation. Our laboratory is pursuing approaches to improve the diagnostic and radiotherapeutic effectiveness of HPMA copolymers by reducing the nontarget accumulation.

View Article and Find Full Text PDF

The neurotensin receptor 1 (NTR1) has been shown to be a promising target, due to its increased level of expression relative to normal tissue, for pancreatic and colon cancers. This has prompted the development of a variety of NTR1-targeted radiopharmaceuticals, based on the neurotensin (NT) peptide, for diagnostic and radiotherapeutic applications. A major obstacle for the clinical translation of NTR1-targeted radiotherapeutics would likely be nephrotoxicity due to the high levels of kidney retention.

View Article and Find Full Text PDF

This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization.

View Article and Find Full Text PDF