Publications by authors named "Jere Mitchell"

Stimulation of the mesencephalic locomotor region elicits exaggerated sympathetic nerve and pressor responses in spontaneously hypertensive rats (SHR) as compared with normotensive Wistar-Kyoto rats (WKY). This suggests that central command or its influence on vasomotor centers is augmented in hypertension. The decerebrate animal model possesses an ability to evoke intermittent bouts of spontaneously occurring motor activity (SpMA) and generates cardiovascular responses associated with the SpMA.

View Article and Find Full Text PDF

Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli.

View Article and Find Full Text PDF

Numerous studies have demonstrated that sympathetic nervous system overactivation during exercise in hypertensive rodents and humans is due, in part, to an exaggerated reflex response known as the exercise pressor reflex. Our prior studies have implicated a key role of mineralocorticoid receptor activation in mediating an augmented exercise pressor reflex in spontaneously hypertensive rats, which is mitigated by blockade with eplerenone. However, the effect of eplerenone on exercise pressor reflex has not been assessed in human hypertension.

View Article and Find Full Text PDF

Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.

View Article and Find Full Text PDF

Patients with type 2 diabetes display an exaggerated pressor response to exercise. However, evidence supporting the association between the magnitude of the pressor response to exercise and insulin resistance-related factors including hemoglobin A1c (HbA1c) or homeostatic model assessment of insulin resistance (HOMA-IR) in nondiabetic subjects has remained sparse and inconclusive. Thus we investigated the relationship between cardiovascular responses to exercise and insulin resistance-related factors in nondiabetic healthy men ( = 23) and women ( = 22) above 60 yr old.

View Article and Find Full Text PDF

The blood pressure response to exercise is exaggerated in the type 1 diabetes mellitus (T1DM). An overactive exercise pressor reflex (EPR) contributes to the potentiated pressor response. However, the mechanism(s) underlying this abnormal EPR activity remains unclear.

View Article and Find Full Text PDF

Key Points: Insulin is known to activate the sympathetic nervous system centrally. A mechanical stimulus to tissues activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion neurons of these afferents.

View Article and Find Full Text PDF

The cardiovascular responses to exercise are potentiated in patients with type 2 diabetes mellitus (T2DM). However, the underlying mechanisms causing this abnormality remain unknown. Central command (CC) and the exercise pressor reflex (EPR) are known to contribute significantly to cardiovascular control during exercise.

View Article and Find Full Text PDF

Background Increased blood pressure ( BP ) variability and nondipping status seen on 24-hour ambulatory BP monitoring are often observed in autonomic failure ( ATF ). Methods and Results We assessed BP variability and nocturnal BP dipping in 273 patients undergoing ambulatory BP monitoring at Southwestern Medical Center between 2010 and 2017. SD , average real variability, and variation independent of mean were calculated from ambulatory BP monitoring.

View Article and Find Full Text PDF

Central command (CC) and the exercise pressor reflex (EPR) regulate blood pressure during exercise. We previously demonstrated that experimental stimulation of the CC and EPR pathways independently contribute to the exaggerated pressor response to exercise in hypertension. It is known that CC and EPR modify one another functionally.

View Article and Find Full Text PDF

Background: Inorganic phosphate (Pi) is used extensively as a preservative and a flavor enhancer in the Western diet. Physical inactivity, a common feature of Western societies, is associated with increased cardiovascular morbidity and mortality. It is unknown whether dietary Pi excess contributes to exercise intolerance and physical inactivity.

View Article and Find Full Text PDF

Exaggerated heart rate (HR) and blood pressure responses to exercise in hypertension are mediated, in part, by overactivity of the exercise pressor reflex (EPR). The mechanisms underlying this EPR dysfunction have not been fully elucidated. Previous studies have shown that stimulation of mineralocorticoid receptors (MRs) with exogenous administration of aldosterone in normal, healthy rats reproduces the EPR overactivity characteristic of hypertensive animals.

View Article and Find Full Text PDF

During both dynamic (e.g., endurance) and static (e.

View Article and Find Full Text PDF

An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise.

View Article and Find Full Text PDF

This article is the result of the work of the andrology task-force of the Association of Applied Animal Andrology, American College of Theriogenologists, European College of Animal Reproduction, Society for Theriogenology, and National Association of Animal Breeders. It is intended to serve as a comprehensive reference on methods to evaluate sperm concentration and to contribute to the adoption of best practices in veterinary andrology laboratories. The information covered in the article includes sample preparation and the use of manual counts, spectrophotometers, computer-assisted semen analysis, NucleoCounter, and flow cytometry.

View Article and Find Full Text PDF

The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly.

View Article and Find Full Text PDF

The sympathetic and pressor responses to exercise are exaggerated in hypertension. Evidence suggests that an overactive exercise pressor reflex (EPR) contributes to this abnormal responsiveness. The mechanisms underlying this EPR overactivity are poorly understood.

View Article and Find Full Text PDF

Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats.

View Article and Find Full Text PDF