PIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket.
View Article and Find Full Text PDFThis Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2.
View Article and Find Full Text PDFSince the early 2000s, the Aurora kinases have become major targets of oncology drug discovery particularly Aurora-A and Aurora-B kinases (AKA/AKB) for which the selective inhibition in cells lead to different phenotypes. In addition to targeting these Aurora kinases involved in mitosis, CDK1 has been added as a primary inhibition target in hopes of enhancing the cytotoxicity of our chemotypes harboring the pyrazolopyrimidine core. SAR optimization of this series using the AKA, AKB and CDK1 biochemical assays led to the discovery of the compound 7h which combines strong potency against the 3 kinases with an acceptable microsomal stability.
View Article and Find Full Text PDFA novel class of pyrazolopyrimidine-sulfonamides was discovered as selective dual inhibitors of aurora kinase A (AKA) and cyclin-dependent kinase 1 (CDK1). These inhibitors were originally designed based on an early lead (compound I). SAR development has led to the discovery of potent inhibitors with single digit nM IC(50)s towards both AKA and CDK1.
View Article and Find Full Text PDF