Publications by authors named "Jeppe Vinther"

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus (HCV), which causes chronic infection, liver cirrhosis and cancer. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA.

View Article and Find Full Text PDF

Yield improvements in cell factories can potentially be obtained by fine-tuning the regulatory mechanisms for gene candidates. In pursuit of such candidates, we performed RNA-sequencing of two α-amylase producing Bacillus strains and predict hundreds of putative novel non-coding transcribed regions. Surprisingly, we found among hundreds of non-coding and structured RNA candidates that non-coding genomic regions are proportionally undergoing the highest changes in expression during fermentation.

View Article and Find Full Text PDF

The production of the alpha-amylase (AMY) enzyme in at a high rate leads to the accumulation of unfolded AMY, which causes secretion stress. The over-expression of the PrsA chaperone aids enzyme folding and reduces stress. To identify affected pathways and potential mechanisms involved in the reduced growth, we analyzed the transcriptomic differences during fed-batch fermentation between a PrsA over-expressing strain and control in a time-series RNA-seq experiment.

View Article and Find Full Text PDF

Background: Bacillus subtilis is a Gram-positive bacterium used as a cell factory for protein production. Over the last decades, the continued optimization of production strains has increased yields of enzymes, such as amylases, and made commercial applications feasible. However, current yields are still significantly lower than the theoretically possible yield based on the available carbon sources.

View Article and Find Full Text PDF

mRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed to high light, which induces translation of mRNA encoding the D1 subunit of photosystem II.

View Article and Find Full Text PDF

A large part of our current understanding of gene regulation in Gram-positive bacteria is based on , as it is one of the most well studied bacterial model systems. The rapid growth in data concerning its molecular and genomic biology is distributed across multiple annotation resources. Consequently, the interpretation of data from further experiments becomes increasingly challenging in both low- and large-scale analyses.

View Article and Find Full Text PDF

Methylation of guanosine on position N7 (m7G) on internal RNA positions has been found in all domains of life and have been implicated in human disease. Here, we present m7G Mutational Profiling sequencing (m7G-MaP-seq), which allows high throughput detection of m7G modifications at nucleotide resolution. In our method, m7G modified positions are converted to abasic sites by reduction with sodium borohydride, directly recorded as cDNA mutations through reverse transcription and sequenced.

View Article and Find Full Text PDF

RNA sequencing library construction using single-stranded ligation of a DNA adapter to 3' ends of cDNAs often produces primer-adapter byproducts, which compete with cDNA-adapter ligation products during library amplification and, therefore, reduces the number of informative sequencing reads. We find that Exo I digestion efficiently and selectively removes surplus reverse transcription primer and thereby reduces the primer-adapter product contamination in 3' cDNA ligation-based sequencing libraries, including small RNA libraries, which are typically similar in size to the primer-adapter products. We further demonstrate that Exo I treatment does not lead to trimming of the cDNA 3' end when duplexed with the RNA template.

View Article and Find Full Text PDF

RNA sequencing (RNA-seq) has become the preferred method for global quantification of bacterial gene expression. With the continued improvements in sequencing technology and data analysis tools, the most labor-intensive and expensive part of an RNA-seq experiment is the preparation of sequencing libraries, which is also essential for the quality of the data obtained. Here, we present a straightforward and inexpensive basic protocol for preparation of strand-specific RNA-seq libraries from bacterial RNA as well as a computational pipeline for the data analysis of sequencing reads.

View Article and Find Full Text PDF

RNase H cleaves RNA in RNA-DNA duplexes. It is present in all domains of life as well as in multiple viruses and is essential for mammalian development and for human immunodeficiency virus replication. Here, we developed a sequencing-based method to measure the cleavage of thousands of different RNA-DNA duplexes and thereby comprehensively characterized the sequence preferences of HIV-1, human and Escherichia coli RNase H enzymes.

View Article and Find Full Text PDF

The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats.

View Article and Find Full Text PDF

Processing and post-transcriptional regulation of RNA often depend on binding of regulatory molecules to short motifs in RNA. The effects of such interactions are difficult to study, because most regulatory molecules recognize partially degenerate RNA motifs, embedded in a sequence context specific for each RNA. Here, we describe Library Sequencing (LibSeq), an accurate massively parallel reporter method for completely characterizing the regulatory potential of thousands of short RNA sequences in a specific context.

View Article and Find Full Text PDF

RNA structure-probing data can improve the prediction of RNA secondary and tertiary structure and allow structural changes to be identified and investigated. In recent years, massive parallel sequencing has dramatically improved the throughput of RNA structure probing experiments, but at the same time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data.

View Article and Find Full Text PDF

Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule.

View Article and Find Full Text PDF

Hydroxyl Radical Footprinting (HRF) is a tried-and-tested method for analysis of the tertiary structure of RNA and for identification of protein footprints on RNA. The hydroxyl radical reaction breaks accessible parts of the RNA backbone, thereby allowing ribose accessibility to be determined by detection of reverse transcriptase termination sites. Current methods for HRF rely on reverse transcription of a single primer and detection by fluorescent fragments by capillary electrophoresis.

View Article and Find Full Text PDF

Detection of reverse transcriptase termination sites is important in many different applications, such as structural probing of RNAs, rapid amplification of cDNA 5' ends (5' RACE), cap analysis of gene expression, and detection of RNA modifications and protein-RNA cross-links. The throughput of these methods can be increased by applying massive parallel sequencing technologies.Here, we describe a versatile method for detection of reverse transcriptase termination sites based on ligation of an adapter to the 3' end of cDNA with bacteriophage TS2126 RNA ligase (CircLigase™).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy of drugs, which has given rise to the field of 'miRNA pharmacogenomics' through 'Pharmaco-miRs'.

View Article and Find Full Text PDF

Objective: The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug efficacy. Consequently, differences in the miRNA expression among individuals could be an important factor contributing to differential drug response.

View Article and Find Full Text PDF

All human papillomavirus type 16 (HPV-16) early mRNAs are polyadenylated at the poly(A) signal within the early 3' untranslated region (3'UTR). The 3'end of the early E5 open reading frame and the 3'UTR of HPV-16 is very AU-rich, with five regions similar to cytoplasmic polyadenylation elements (CPEs). We show here that a fragment of the early 3'end comprising four of the five CPE-like regions when inserted downstream of a reporter gene confers regulation of the gene expression.

View Article and Find Full Text PDF

Alternative splicing (AS) is a widespread mechanism with an important role in increasing transcriptome and proteome diversity by generating multiple different products from the same gene. Evolutionary studies of AS have focused primarily on the conservation of alternatively spliced sequences or of the AS pattern of those sequences itself. Less is known about the evolution of the regulation of AS, but several studies, working from different perspectives, have recently made significant progress.

View Article and Find Full Text PDF

Background: The 3' untranslated region (UTR) of p53 mRNA contains two conserved U-rich sequences resembling cytoplasmic polyadenylation elements (CPE). It is not known if these sequences regulate p53 expression by post-transcriptional mechanisms.

Materials And Methods: Stable p53 3'UTR reporter HaCaT skin and MCF-7 breast cancer cell lines were established.

View Article and Find Full Text PDF

The mechanisms of spliceosomal intron creation have proved elusive. Here we describe a new mechanism: the recruitment of internal exonic sequences ('intronization') in Caenorhabditis species. The numbers of intronization events and introns gained by other mechanisms are similar, suggesting that intronization significantly contributes to recent intron creation in nematodes.

View Article and Find Full Text PDF