Multi-trait and multi-environment analyses can improve genomic prediction by exploiting between-trait correlations and genotype-by-environment interactions. In the context of reaction norm models, genotype-by-environment interactions can be described as functions of high-dimensional sets of markers and environmental covariates. However, comprehensive multi-trait reaction norm models accounting for marker × environmental covariates interactions are lacking.
View Article and Find Full Text PDFIncluding additive and additive-by-additive epistasis in a NOIA parametrization did not yield orthogonal partitioning of genetic variances, nevertheless, it improved predictive ability in a leave-one-out cross-validation for wheat grain yield. Additive-by-additive epistasis is the principal non-additive genetic effect in inbred wheat lines and is potentially useful for developing cultivars based on total genetic merit; nevertheless, its practical benefits have been highly debated. In this article, we aimed to (i) evaluate the performance of models including additive and additive-by-additive epistatic effects for variance components (VC) estimation of grain yield in a wheat-breeding population, and (ii) to investigate whether including additive-by-additive epistasis in genomic prediction enhance wheat grain yield predictive ability (PA).
View Article and Find Full Text PDFWheat ( L.) is one of the world's staple food crops and one of the most devastating foliar diseases attacking wheat is powdery mildew (PM). In Denmark only a few specific fungicides are available for controlling PM and the use of resistant cultivars is often recommended.
View Article and Find Full Text PDFConventional wheat-breeding programs involve crossing parental lines and subsequent selfing of the offspring for several generations to obtain inbred lines. Such a breeding program takes more than 8 years to develop a variety. Although wheat-breeding programs have been running for many years, genetic gain has been limited.
View Article and Find Full Text PDFGenomic selection has been extensively implemented in plant breeding schemes. Genomic selection incorporates dense genome-wide markers to predict the breeding values for important traits based on information from genotype and phenotype records on traits of interest in a reference population. To date, most relevant investigations have been performed using single trait genomic prediction models (STGP).
View Article and Find Full Text PDFMaking decisions on plant breeding programs require plant breeders to be able to test different breeding strategies by taking into account all the crucial factors affecting crop genetic improvement. Due to the complexity of the decisions, computer simulation serves as an important tool for researchers and plant breeders. This paper describes ADAM-plant, which is a computer software that models breeding schemes for self-pollinated and cross-pollinated crop plants using stochastic simulation.
View Article and Find Full Text PDFOptimization of flowering is an important breeding goal in forage and turf grasses, such as perennial ryegrass (Lolium perenne L.). Nine floral control genes including Lolium perenne CONSTANS (LpCO), SISTER OF FLOWERING LOCUS T (LpSFT), TERMINAL FLOWER1 (LpTFL1), VERNALIZATION1 (LpVRN1, identical to LpMADS1) and five additional MADS-box genes, were analyzed for nucleotide diversity and linkage disequilibrium (LD).
View Article and Find Full Text PDFPoa pratensis, a type species for the grass family (Poaceae), is an important cool season grass that accumulates fructans as a polysaccharide reserve. We studied fructan contents and expression of candidate fructan metabolism genes during cold acclimation in three varieties of P. pratensis adapted to different environments: Northern Norway, Denmark, and the Netherlands.
View Article and Find Full Text PDFBackground: Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits.
View Article and Find Full Text PDFBackground: Forage quality of maize is influenced by both the content and structure of lignins in the cell wall. Biosynthesis of monolignols, constituting the complex structure of lignins, is catalyzed by enzymes in the phenylpropanoid pathway.
Results: In the present study we have amplified partial genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.
Flowering time is important when adapting crop plants to different environments. While high feeding quality of forage grasses is facilitated by repression of flowering, flowering should also be inducible to facilitate grass seed production. Consequently, the identification and characterization of the genes controlling flowering time in forage grasses, including perennial ryegrass (Lolium perenne L.
View Article and Find Full Text PDFThe objective of this study was to map quantitative trait loci (QTL) for the vernalization response in perennial ryegrass (Lolium perenne L.). The mapping population consisted of 184 F2 genotypes produced from a cross between one genotype of a synthetic perennial ryegrass variety "Veyo" and one genotype from the perennial ryegrass ecotype "Falster".
View Article and Find Full Text PDF