The conventional approach to appearance prediction for 3D printed parts is to print a thin slab of material and measure its reflectance or transmittance with a spectrophotometer. Reflectance works for opaque printing materials. Transmittance works for transparent printing materials.
View Article and Find Full Text PDFThe optical properties available for an object are most often fragmented and insufficient for photorealistic rendering of the object. We propose a procedure for digitizing a translucent object with sufficient information for predictive rendering of its appearance. Based on object material descriptions, we compute optical properties and validate or adjust this object appearance model based on comparison of simulation with spectrophotometric measurements of the bidirectional scattering-surface reflectance distribution function (BSSRDF).
View Article and Find Full Text PDFThe increasing use of a spatially varying bidirectional reflectance distribution function (svBRDF) to describe the appearance of an object raises the important question of how BRDF values change when measured on a small scale. For this reason, we present a new goniospectrophotometer with the ability to measure the BRDF at the micrometer scale (μBRDF). The instrument produces BRDF measurements with a measurement surface diameter of 31 µm.
View Article and Find Full Text PDFThe commonly used analytic bidirectional reflectance distribution functions (BRDFs) do not model goniochromatism, that is, angle-dependent material color. The material color is usually defined by a diffuse reflectance spectrum or RGB vector and a specular part based on a spectral complex index of refraction. Extension of the commonly used BRDFs based on wave theory can help model goniochromatism, but this comes at the cost of significant added model complexity.
View Article and Find Full Text PDFSelective laser sintering (SLS) is a well-established technology that is used for additive manufacturing. Significant efforts have been made to improve SLS by optimizing the powder deposition, laser beam parameters, and temperature settings. The purpose is to ensure homogeneous sintering and prevent geometric and appearance inaccuracies in the manufactured objects.
View Article and Find Full Text PDFSpectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher.
View Article and Find Full Text PDFTo study the shape of objects using geometric morphometrics, landmarks are oftentimes collected digitally from a 3D scanned model. The expert may annotate landmarks using software that visualizes the 3D model on a flat screen, and interaction is achieved with a mouse and a keyboard. However, landmark annotation of a 3D model on a 2D display is a tedious process and potentially introduces error due to the perception and interaction limitations of the flat interface.
View Article and Find Full Text PDFWhen 3D scanning objects, the objective is usually to obtain a continuous surface. However, most surface scanning methods, such as structured light scanning, yield a point cloud. Obtaining a continuous surface from a point cloud requires a subsequent surface reconstruction step, which is directly affected by any error from the computation of the point cloud.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2018
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F2 for every term of a series expansion.
View Article and Find Full Text PDFTransparent objects require acquisition modalities that are very different from the ones used for objects with more diffuse reflectance properties. Digitizing a scene where objects must be acquired with different modalities requires scene reassembly after reconstruction of the object surfaces. This reassembly of a scene that was picked apart for scanning seems unexplored.
View Article and Find Full Text PDFDiffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed, but their low spatial resolution limits their validity ranges for the coefficients.
View Article and Find Full Text PDFThe quality of a dairy product is largely determined by its microstructure which also affects its optical properties. Consequently, an assessment of the optical properties during production may be part of a feedback system for ensuring the quality of the production process. This paper presents a novel camera-based measurement technique that enables robust quantification of a wide range of reduced scattering coefficients and absorption coefficients.
View Article and Find Full Text PDFRayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature.
View Article and Find Full Text PDFThe refractive index of freezing brine is important in order to, for example, estimate oceanic scattering as sea ice develops. Previously, no simple continuous expression was available for estimating the refractive index of brine at subzero temperatures. I show that extrapolation of the empirical formula for the refractive index of seawater by Quan and Fry [Appl.
View Article and Find Full Text PDF