White adipose tissue (WAT) is important for metabolic homeostasis. We established the differential proteomic signatures of WAT in glucose-tolerant lean and obese individuals and patients with type 2 diabetes (T2D) and the response to 8 weeks of high-intensity interval training (HIIT). Using a high-throughput and reproducible mass spectrometry-based proteomics pipeline, we identified 3773 proteins and found that most regulated proteins displayed progression in markers of dysfunctional WAT from lean to obese to T2D individuals and were highly associated with clinical measures such as insulin sensitivity and HbA1c.
View Article and Find Full Text PDFObjective: The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle.
View Article and Find Full Text PDFThe ability of insulin to stimulate glucose uptake in skeletal muscle is important for whole-body glycemic control. Insulin-stimulated skeletal muscle glucose uptake is improved in the period after a single bout of exercise, and accumulating evidence suggests that phosphorylation of TBC1D4 by the protein kinase AMPK is the primary mechanism responsible for this phenomenon. To investigate this, we generated a TBC1D4 knock-in mouse model with a serine-to-alanine point mutation at residue 711 that is phosphorylated in response to both insulin and AMPK activation.
View Article and Find Full Text PDFExercise is an effective strategy in the prevention and treatment of metabolic diseases. Alterations in the skeletal muscle proteome, including post-translational modifications, regulate its metabolic adaptations to exercise. Here, we examined the effect of high-intensity interval training (HIIT) on the proteome and acetylome of human skeletal muscle, revealing the response of 3168 proteins and 1263 lysine acetyl-sites on 464 acetylated proteins.
View Article and Find Full Text PDFInsulin-stimulated muscle glucose uptake is a key process in glycemic control. This process depends on the redistribution of glucose transporters to the surface membrane, a process that involves regulatory proteins such as TBC1D1 and TBC1D4. Accordingly, a TBC1D4 loss-of-function mutation in human skeletal muscle is associated with an increased risk of type 2 diabetes, and observations from carriers of a TBC1D1 variant associate this protein to a severe obesity phenotype.
View Article and Find Full Text PDFSkeletal muscle is an insulin-responsive tissue and typically takes up most of the glucose that enters the blood after a meal. Moreover, it has been reported that skeletal muscle may increase the extraction of glucose from the blood by up to 50-fold during exercise compared to resting conditions. The increase in muscle glucose uptake during exercise and insulin stimulation is dependent on the translocation of glucose transporter 4 (GLUT4) from intracellular compartments to the muscle cell surface membrane, as well as phosphorylation of glucose to glucose-6-phosphate by hexokinase II.
View Article and Find Full Text PDFMol Metab
October 2020
Objective: Evidence for AMP-activated protein kinase (AMPK)-mediated regulation of skeletal muscle metabolism during exercise is mainly based on transgenic mouse models with chronic (lifelong) disruption of AMPK function. Findings based on such models are potentially biased by secondary effects related to a chronic lack of AMPK function. To study the direct effect(s) of AMPK on muscle metabolism during exercise, we generated a new mouse model with inducible muscle-specific deletion of AMPKα catalytic subunits in adult mice.
View Article and Find Full Text PDFMuscle insulin sensitivity for stimulating glucose uptake is enhanced in the period after a single bout of exercise. We recently demonstrated that AMPK is necessary for AICAR, contraction, and exercise to enhance muscle and whole-body insulin sensitivity in mice. Correlative observations from both human and rodent skeletal muscle suggest that regulation of the phosphorylation status of TBC1D4 may relay this insulin sensitization.
View Article and Find Full Text PDF