Publications by authors named "Jeppe Fock"

Point-of-care (POC) testing offers fast and on-site diagnostics and can be crucial against many infectious diseases and in screening. One remaining challenge in serological POC testing is the quantification of immunoglobulin G (IgG) and immunoglobulin M (IgM). Quantification of IgG/IgM can be important to evaluate immunity and to discriminate recent infections from past infections and primary infections from secondary infections.

View Article and Find Full Text PDF

In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast.

View Article and Find Full Text PDF

Point-of-care (POC) quantification of antibody responses against SARS-CoV-2 spike protein can enable decentralized monitoring of immune responses after infection or vaccination. We evaluated a novel POC microfluidic cartridge-based device (ViroTrack Sero COVID-19 Total Ab) for quantitative detection of total antibodies against SARS-CoV-2 spike trimeric spike protein compared to standard laboratory chemiluminescence (CLIA)-based tests. Antibody responses of 101 individuals were measured on capillary blood, venous whole blood, plasma, and diluted plasma samples directly on the POC.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Fast, accurate, and simple blood-based assays for quantification of anti-SARS-CoV-2 antibodies are urgently needed to identify infected individuals and keep track of the spread of disease.

Methods: The study included 33 plasma samples from 20 individuals with confirmed COVID-19 by real-time reverse-transcriptase polymerase chain reaction and 40 non-COVID-19 plasma samples.

View Article and Find Full Text PDF

The attractive electronic and magnetic properties together with their biocompatibility make iron-oxide nanoparticles appear as functional materials. In Fe-oxide nanoparticle (IONP) ensembles, it is crucial to enhance their performance thanks to controlled size, shape, and stoichiometry ensembles. In light of this, we conduct a comprehensive investigation in an ensemble of 28 nm cuboid-shaped IONPs in which all the analyses concur with the coexistence of magnetite/maghemite phases in their cores.

View Article and Find Full Text PDF

Circle-to-circle amplification (C2CA) is a specific and precise cascade nucleic acid amplification method consisting of more than one round of padlock probe ligation and rolling circle amplification (RCA). Although C2CA provides a high amplification efficiency with a negligible increase of false-positive risk, it contains several step-by-step operation processes. We herein demonstrate a homogeneous and isothermal nucleic acid quantification strategy based on C2CA and optomagnetic analysis of magnetic nanoparticle (MNP) assembly.

View Article and Find Full Text PDF

Applications of conventional linear ligation-rolling circle amplification (RCA) are restricted by the sophisticated operation steps and unsatisfactory picomolar-level detection limits. We herein demonstrate an RCA-based cascade amplification reaction that converts a side-reaction to secondary amplification, which improves the detection limit and simplifies the operation compared to linear ligation-RCA assays. The proposed nicking-assisted enzymatic cascade amplification (NECA) comprises an on-loop amplification reaction using circular templates to generate intermediate amplicons, and an off-loop amplification reaction using intermediate amplicons as primers for end amplicons.

View Article and Find Full Text PDF

Detection of a single base mutation in Mycobacterium tuberculosis DNA can provide fast and highly specific diagnosis of antibiotic-resistant tuberculosis. Mutation-specific ligation of padlock probes (PLPs) on the target followed by rolling circle amplification (RCA) is highly specific, but challenging to integrate in a simple microfluidic device due to the low temperature stability of the phi29 polymerase and the interference of phi29 with the PLP annealing and ligation. Here, we utilized the higher operation temperature and temperature stability of Equiphi29 polymerase to simplify the integration of the PLP ligation and RCA steps of an RCA assay in two different strategies performed at uniform temperature.

View Article and Find Full Text PDF

False-positive results cause a major problem in nucleic acid amplification, and require external blank/negative controls for every test. However, external controls usually have a simpler and lower background compared to the test sample, resulting in underestimation of false-positive risks. Internal negative controls, performed simultaneously with amplification to monitor the background level in real-time, are therefore appealing in both research and clinic.

View Article and Find Full Text PDF

Rolling circle amplification (RCA) of a synthetic nucleic acid target is detected using magnetic nanoparticles (MNPs) combined with an optomagnetic (OM) readout. Two RCA assays are developed with on-chip detection of rolling circle products (RCPs) either at end-point where MNPs are mixed with the sample after completion of RCA or in real time where MNPs are mixed with the sample during RCA. The plastic chip acts as a cuvette, which is positioned in a setup integrated with temperature control and simultaneous detection of four parallel DNA hybridization reactions between functionalized MNPs and products of DNA amplification.

View Article and Find Full Text PDF

Rolling circle amplification (RCA) combined with padlock probe recognition of a DNA target is attractive for on-chip nucleic acid testing due to its high specificity and isothermal reaction conditions. However, the integration of RCA on an automated chip platform is challenging due to the different reagents needed for the reaction steps and the temperature sensitivity of the phi29 polymerase. Here, we describe the integration of an RCA assay on a single-use polymer chip platform where magnetic microbeads are used as solid support to transport the DNA target between three connected reaction chambers for (i) padlock probe annealing and ligation, (ii) RCA, and (iii) optomagnetic detection of RCA products.

View Article and Find Full Text PDF

Rolling circle amplification (RCA) is a linear isothermal amplification technique that is widely applied in biomolecular assays due to its high specificity. Handling of a target sample using magnetic microbeads (MMBs) in a multi-step assay is appealing as the MMBs enable separation and transportation using an external magnet. Detection of amplicons using optomagnetic measurements of the rotational diffusion properties of magnetic nanoparticles (MNPs) is also appealing as it can be performed on any transparent sample container.

View Article and Find Full Text PDF

Padlock probe ligation-based rolling circle amplification (RCA) can distinguish single-nucleotide variants, which is promising for the detection of drug-resistance mutations in, e.g., ().

View Article and Find Full Text PDF

The response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the performance of a colloidal MNP dispersion. We present and demonstrate the use of optomagnetic (OM) and AC susceptibility (ACS) measurements vs.

View Article and Find Full Text PDF

We report on an optomagnetic technique optimised for real-time molecular detection of Dengue fever virus under ideal as well as non-ideal laboratory conditions using two different detection approaches. The first approach is based on the detection of the hydrodynamic volume of streptavidin coated magnetic nanoparticles attached to biotinylated LAMP amplicons. We demonstrate detection of sub-femtomolar Dengue DNA target concentrations in the ideal contamination-free lab environment within 20 min.

View Article and Find Full Text PDF

The remanent magnetic moment and the hydrodynamic size are important parameters for the synthesis and applications of magnetic nanoparticles (MNPs). We present the theoretical basis for the determination of the remanent magnetic moment and the hydrodynamic size of MNPs with a narrow size distribution using optomagnetic measurements. In these, the 2nd harmonic variation of the intensity of light transmitted through an MNP suspension is measured as a function of an applied axial oscillating magnetic field.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how certain magnetic nanoparticles can detect DNA triplex structures in a way that depends on the amount of the dose used.
  • These magnetic nanoparticles are modified to respond to changes in pH, allowing them to form clusters that can be activated or deactivated.
  • The findings suggest new possibilities for using these nanoparticles in biomedical applications, such as targeted drug delivery or diagnostics.
View Article and Find Full Text PDF

There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field can be used to accelerate assay kinetics. We present the first study and comparison of the performance of magnetic susceptibility measurements and a newly proposed optomagnetic method.

View Article and Find Full Text PDF

We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved.

View Article and Find Full Text PDF

We demonstrate a nanoparticle-based assay for the detection of bacteria causing urinary tract infections in patient samples with a total assay time of 4 h. This time is significantly shorter than the current gold standard, plate culture, which can take several days depending on the pathogen. The assay is based on padlock probe recognition followed by two cycles of rolling circle amplification (RCA) to form DNA coils corresponding to the target bacterial DNA.

View Article and Find Full Text PDF

Fullerenes are considered anchoring groups for molecular electronics due to a large contact area and their affinity for noble metals. The conductances of fullerene-terminated molecules, however, are found to be even lower than for thiol termination. The effects of weak molecule-metal coupling and symmetry breaking are studied by transport measurements of C(60) and functionalized C(60).

View Article and Find Full Text PDF

We describe herein the synthesis of a triptycene-based surfactant designed with the ability to solubilise single-walled carbon nanotubes (SWNTs) and C(60) in water through non-covalent interactions. Furthermore, an amphiphilic naphthalene-based surfactant with the same ability to solubilise SWNTs and C(60) has also been prepared. The compounds synthesised were designed with either two ionic or non-ionic tails to ensure a large number of supramolecular interactions with the solvent, thereby promoting strong solubilisation.

View Article and Find Full Text PDF

We report on the vibrational fingerprint of single C(60) terminated molecules in a mechanically controlled break junction (MCBJ) setup using a novel statistical approach manipulating the junction mechanically to address different molecular configurations and to monitor the corresponding vibrational modes. In the IETS spectra, the vibrations of the anchoring C(60) dominate the spectra; thus information on the unit anchored with C(60) to the electrodes is masked by the modes arising from the anchoring groups. However, we have identified the additional modes from the fluorene backbone optically.

View Article and Find Full Text PDF

In continuation of previous studies showing promising metal-molecule contact properties a variety of C(60) end-capped "molecular wires" for molecular electronics were prepared by variants of the Prato 1,3-dipolar cycloaddition reaction. Either benzene or fluorene was chosen as the central wire, and synthetic protocols for derivatives terminated with one or two fullero[c]pyrrolidine "electrode anchoring" groups were developed. An aryl-substituted aziridine could in some cases be employed directly as the azomethine ylide precursor for the Prato reaction without the need of having an electron-withdrawing ester group present.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondlo966d5e9l813ieoudohj1ae9uc4q6s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once