Publications by authors named "Jeongyeon Seo"

This study aimed to evaluate the physiological role of NAMPT associated with MDPC-23 odontoblast cell proliferation. Cell viability was measured using the (DAPI) staining, caspase activation analysis and immunoblotting were performed. Visfatin promoted MDPC-23 odontoblast cell growth in a dose-dependent manner.

View Article and Find Full Text PDF

Metformin is an anti-diabetic drug that exerts protective effects against neurodegenerative diseases. In this study, we investigated the protective effects of metformin against manganese (Mn)-induced cytotoxicity associated with Parkinson's disease-like symptoms in N27-A dopaminergic (DA) cells. Metformin (0.

View Article and Find Full Text PDF

Objective: To investigate the relationship between low back pain (LBP) and sagittal spino-pelvic parameters along with the relationship between LBP and back muscle mass in Korean male and female fishery workers.

Methods: This retrospective study included a total of 146 subjects who underwent Fishermen's health survey conducted between June 2018 and August 2020. LBP was evaluated through visual analogue scale (VAS) and Oswestry Disability Index (ODI).

View Article and Find Full Text PDF

This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC.

View Article and Find Full Text PDF

The aim of this study was to evaluate the anti-osteoporosis effects of leaf ethanol extract (OFLEE) in bone marrow-derived macrophages (BMM) and animals with osteoporosis. OFLEE not only suppressed tartrate-resistant acid phosphatase (TRAP)-positive cells with multiple nuclei but also decreased TRAP activity in BMM treated with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). The formation of F-actin rings and the expression and activation of matrix metalloproteinases were decreased by OFLEE in BMM treated with M-CSF and RANKL.

View Article and Find Full Text PDF

Background/aim: 25-hydroxycholesterol (25-HC) plays important roles in lipid metabolism, inflammatory responses, and apoptosis, but its pathophysiological association with osteoporosis (OP) has not been verified in osteoblasts. Hence, we studied the pathophysiological linkage and underlying cellular mechanisms of 25-HC in human osteoblast-like MG-63 cells and an ovariectomy-induced osteoporotic mouse model.

Materials And Methods: To investigate the pathophysiological linkage between 25-HC-induced osteoblast oxiapoptophagy and OP, 25-HC ELISA assay, MTT assay, cell live/dead staining, hematoxylin and eosin staining, DAPI staining, flow cytometry analysis, western blot, caspase-3 staining, reactive oxygen species (ROS) assay, autophagy staining, immunocytochemistry, Micro-CT image analysis and immunocytochemistry were performed in MG-63 cells and ovariectomy-induced OP animals.

View Article and Find Full Text PDF

Aim: The physiological effects and cellular mechanism of 25-hydroxycholesterol (25-HC), which is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase (CH25H) expressed under inflammatory conditions, are still largely unknown during odontoclastogenesis. This study aimed to evaluate 25-HC-induced odontoclastogenesis and its cellular mechanisms in odontoblast-like MDPC-23 cells.

Methodology: To investigate 25-HC-induced odontoclastogenesis of MDPC-23 cells and its cellular mechanism, haemotoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, dentine resorption assay, zymography, reactive oxygen species (ROS) detection, immunocytochemistry, and nuclear translocation were performed.

View Article and Find Full Text PDF

The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation.

View Article and Find Full Text PDF

7α,25-dihydroxycholesterol (7α,25-DHC) is an oxysterol synthesized from 25-hydroxycholesterol by cytochrome P450 family 7 subfamily B member 1 (CYP7B1) and is a monooxygenase (oxysterol-7α-hydroxylase) expressed under inflammatory conditions in various cell types. In this study, we verified that 7α,25-DHC-induced oxiapoptophagy is mediated by apoptosis, oxidative stress, and autophagy in L929 mouse fibroblasts. MTT assays and live/dead cell staining revealed that cytotoxicity was increased by 7α,25-DHC in L929 cells.

View Article and Find Full Text PDF

Background: Demethoxycurcumin (DMC) is a curcumin analog with antitumor properties. However, its effects have not been investigated in human head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to verify the antitumor effect and cellular signaling pathways of DMC in FaDu HNSCC cells.

View Article and Find Full Text PDF

25-hydroxycholesterol (25-HC) is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase during cholesterol metabolism. The aim of this study was to verify whether 25-HC induces oxiapoptophagy in fibroblasts. 25-HC not only decreased the survival of L929 cells, but also increased the number of cells with condensed chromatin and altered morphology.

View Article and Find Full Text PDF

The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC- 23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common degenerative joint disease with chronic joint pain caused by progressive degeneration of articular cartilage at synovial joints. Acteoside, a caffeoylphenylethanoid glycoside, has various biological activities such as antimicrobial, anti-inflammatory, anticancer, antioxidative, cytoprotective, and neuroprotective effect. Further, oral administration of acteoside at high dosage does not cause genotoxicity.

View Article and Find Full Text PDF

Reports on the neurotoxic and neuroprotective effects of cannabidiol (CBD) have not been in complete accord, showing different and somewhat contradictory results depending upon the brain cell types and experimental conditions employed. This work systematically examines the neuroprotective capability of CBD against oxidative stress (i.e.

View Article and Find Full Text PDF

Construction of extracellular matrix-mimetic nanofilms has considerable potential in biomedical and nanomedicinal fields. In this work, we fabricated neurocompatible layer-by-layer (LbL) films based on ulvan (ULV), a highly sulfated polysaccharide having compositional similarity to glycosaminoglycans that play important functional roles in the brain. ULV was durably assembled as a film with chitosan, another marine-derived polysaccharide, and the film enabled the stable adhesion of primary hippocampal neurons with high viability, comparable to the conventional poly-d-lysine surface.

View Article and Find Full Text PDF

Neuronal migration is a complicated but fundamental process for proper construction and functioning of neural circuits in the brain. Many in vivo studies have suggested the involvement of environmental physical features of a neuron in its migration, but little effort has been made for the in vitro demonstration of topography-driven neuronal migration. This work investigates migratory behaviors of primary hippocampal neurons on a silicon microcone (SiMC) array that presents 14 different pitch domains (pitch: 2.

View Article and Find Full Text PDF

Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are critical brain cells that support neuron growth and protect them but are often overlooked in neuroregenerative medicine.
  • A new 3D culture system using hydrogel microfibers encapsulates astrocytes, which helps guide neuron development and improve synapse formation without direct contact.
  • This innovative astrocyte-laden system could significantly advance therapies for neural injuries like spinal cord damage.
View Article and Find Full Text PDF

The spatial distribution of cell-surface glycoconjugates in the brain changes continuously, reflecting neurophysiology especially in the developing phase, but their functions and fates mostly remain unexplored. Their spatiotemporal distribution is particularly important in polarized neuronal cells, such as cerebral cortical neurons composed of a soma and neurites. In this work, we dually labeled sialic acid (Sia5Ac) and N-acetylgalactosamine/glucosamine (GalNAc/GlcNAc) by a neurocompatible strategy of metabolic glycan labeling, metabolism-by-tissues (MbT), and obtained the multiplexed information on their spatiotemporal distribution on polarized cortical neurons.

View Article and Find Full Text PDF

Axon collateral branches, as a key structural motif of neurons, allow neurons to integrate information from highly interconnected, divergent networks by establishing terminal boutons. Although physical cues are generally known to have a comprehensive range of effects on neuronal development, their involvement in axonal branching remains elusive. Herein, it is demonstrated that the nanopillar arrays significantly increase the number of axon collateral branches and also promote their growth.

View Article and Find Full Text PDF

An enzyme-instructed method is developed for material-independent, cytocompatible coating of phenolic amines, inspired by melanogenesis found in nature. Tyrosinase-based film formation proceeds smoothly in an aqueous solution at neutral pH, and can use various phenolic amines including catecholamines, such as tyrosine, tyramine, dopamine, norepinephrine, and DOPA, as a coating precursor. Compared with polydopamine coating, the method is fast and efficient, and forms uniform films.

View Article and Find Full Text PDF

Control over neurite orientation in primary hippocampal neurons is achieved by using interrupted, anisotropic micropillar arrays as a cell culture platform. Both neurite orientation and neurite length are controlled by a function of interpillar distance.

View Article and Find Full Text PDF