Publications by authors named "Jeongwoo Hong"

In this study, a capacitorless one-transistor dynamic random-access memory (1T-DRAM), based on polycrystalline silicon (poly-Si) nanotube structure with a grain boundary (GB), is designed and analyzed using technology computer-aided design (TCAD) simulation. In the proposed 1T-DRAM, the 1T-DRAM cell exhibited a sensing margin of 422 μA/μm and a retention time of 213 ms at T = 358 K with a single GB. To investigate the effect of random GBs, it was assumed that the number of GB is seven, and the memory characteristics depending on the location and number of GBs were analyzed.

View Article and Find Full Text PDF

Mussel-inspired surface chemistry, in which catechol derivatives play an important role, has garnered extensive research interest owing to material-independent surface coating capability and easy implementation to a wide range of applications. Generally, sequential reactions comprising catechol oxidation, intramolecular reaction of oxidized catechols with nucleophiles, and intermolecular assembly result in polymers that can adhere to many diverse surfaces. Although amines and thiols have similar reactivity toward oxidized catechols, most studies have been conducted with catechol and amine groups as essentials.

View Article and Find Full Text PDF

Dopamine surface chemistry has been of great interest because of its universal coating property and ability to transform nonadhesive molecules into adhesive molecules. Catechol oxidation and intramolecular cyclization underlie the unique property of dopamine (DA) surface chemistry and provide clues for developing new surface modification reagents such as norepinephrine, 5-pyrogallol-2-aminoethane, and perfluorinated DA derivatives. Based on these inspiring properties, a fast and universal surface chemistry technique using 4-(3-aminopropyl)-benzene-1,2-diol (3-catecholpropanamine, CPA) is reported herein.

View Article and Find Full Text PDF