Background: Dual-energy computed tomography (DECT) is a widely used and actively researched imaging modality that can estimate the physical properties of an object more accurately than single-energy CT (SECT). Recently, iterative reconstruction methods called one-step methods have received attention among various approaches since they can resolve the intermingled limitations of the conventional methods. However, the one-step methods typically have expensive computational costs, and their material decomposition performance is largely affected by the accuracy in the spectral coefficients estimation.
View Article and Find Full Text PDFA novel wide-field electron arc technique with a scatterer is implemented for widespread Kaposi's sarcoma (KS) in the distal extremities. Monte Carlo beam modeling for electron arc beams was established to achieve <2% deviation from the measurements, and used for dose calculation. MC-based electron arc plan was performed using CT images of a foot and leg mimicking phantom and compared with in-vivo measurement data.
View Article and Find Full Text PDFWhile an accurate image reconstruction of digital breast tomosynthesis (DBT) is fundamentally impossible due to its limited data, the DBT is increasingly used in clinics for its rich image information at a relatively low dose. One of the dominant image artifacts in DBT that hinders a faithful diagnosis is high-density object artifact in conjunction with a limited angle problem. In this paper, we developed a very efficient method for reconstructing DBT images with much reduced high-density object artifacts.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2017
A single-scan dual-energy low-dose cone-beam CT (CBCT) imaging technique that exploits a multi-slit filter is proposed in this paper. The multi-slit filter installed between the x-ray source and the scanned object is reciprocated during a scan. The x-ray beams through the slits would generate relatively low-energy x-ray projection data, while the filtered beams would make high-energy projection data.
View Article and Find Full Text PDF