Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1).
View Article and Find Full Text PDFBackground: Autofluorescence lifetime (AFL) imaging, a robust technique that enables label-free molecular investigation of biological tissues, is being introduced into the field of cardiovascular diagnostics. However, detailed AFL characteristics of coronary arteries remain elusive and there is a lack of methodology enabling such characterization.
Methods: We developed multispectral fluorescence lifetime imaging microscopy (FLIM) based on analog-mean-delay.
Coronary plaque destabilization involves alterations in microstructure and biochemical composition; however, no imaging approach allows such comprehensive characterization. Herein, the authors demonstrated a simultaneous microstructural and biochemical assessment of high-risk plaques in the coronary arteries in a beating heart using a fully integrated optical coherence tomography and fluorescence lifetime imaging (FLIm). It was found that plaque components such as lipids, macrophages, lipids+macrophages, and fibrotic tissues had unique fluorescence lifetime signatures that were distinguishable using multispectral FLIm.
View Article and Find Full Text PDFBackground: Photoactivation targeting macrophages has emerged as a therapeutic strategy for atherosclerosis, but limited targetable ability of photosensitizers to the lesions hinders its applications. Moreover, the molecular mechanistic insight to its phototherapeutic effects on atheroma is still lacking. Herein, we developed a macrophage targetable near-infrared fluorescence (NIRF) emitting phototheranostic agent by conjugating dextran sulfate (DS) to chlorin e6 (Ce6) and estimated its phototherapeutic feasibility in murine atheroma.
View Article and Find Full Text PDFInflammation plays a pivotal role in the pathogenesis of the acute coronary syndrome. Detecting plaques with high inflammatory activity and specifically treating those lesions can be crucial to prevent life-threatening cardiovascular events. Here, we developed a macrophage mannose receptor (MMR)-targeted theranostic nanodrug (mannose-polyethylene glycol-glycol chitosan-deoxycholic acid-cyanine 7-lobeglitazone; MMR-Lobe-Cy) designed to identify inflammatory activity as well as to deliver peroxisome proliferator-activated gamma (PPARγ) agonist, lobeglitazone, specifically to high-risk plaques based on the high mannose receptor specificity.
View Article and Find Full Text PDFMicro-optical coherence tomography (µOCT) is a novel imaging approach enabling visualization of the microstructures of biological tissues at a cellular or sub-cellular level. However, it has been challenging to develop a miniaturized flexible endoscopic µOCT probe allowing helical luminal scanning. In this study, we built a flexible endoscopic µOCT probe with an outer diameter of 1.
View Article and Find Full Text PDF