A triboelectric nanogenerator (TENG) is an energy generator that converts mechanical energy into electrical energy using triboelectricity at a nanoscale. Given their potential application as power sources in electronic devices, various attempts have been made to improve their output performance. Here, we present an eco-friendly, low-cost, and facile fabrication method to enhance TENG characteristics with keratin protein additives.
View Article and Find Full Text PDFComposites based on carbon nanotubes (CNTs) are promising patternable materials that can be engineered to incorporate the outstanding properties of CNTs into various applications via printing technologies. However, conventional printing methods for CNTs require further improvement to overcome the major drawbacks that limit the patterning resolution and target substrate. Herein, an intaglio contact printing method based on a CNT/paraffin composite is presented for realizing highly precise CNT network patterns without restrictions on the substrate.
View Article and Find Full Text PDFFlexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport. Herein, rationally designed CNT/MnO/graphene-grafted carbon cloth electrodes are prepared by a "graft-deposit-coat" strategy. Due to the large surface area and good conductivity, graphene grafted on carbon cloth offers additional surface areas for the uniform deposition of MnO (9.
View Article and Find Full Text PDFZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes.
View Article and Find Full Text PDFSi-nanowire (NW)-array-based NOT-logic circuits were constructed on plastic substrates. The Si-NW arrays were fabricated on a Si wafer through top-down methods, including conventional photolithography and crystallographic wet etching, and transferred onto the plastic substrates. Two field-effect transistors were fabricated on a single Si-NW array composed of five nanowires aligned in parallel and connected in series to form NOT-logic circuits.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2011
Si-based memristive systems consisting of Ag, amorphous Si, and heavily doped p-type Si nanowires were successfully constructed on plastic substrates through top-down methods, including the crystallographic wet etching of Si wafers, transfer onto plastic substrates, and thin film patterning. The memristive systems showed excellent memory characteristics and flexibility, such as intrinsic hysteric and rectifying behaviors, on/off resistance ratios of >1 × 10(5), and durability for up to 1000 bending cycles. The correlations between the Ag-filament-related nanostructures formed in amorphous Si and the resistance-switching behaviors were carefully examined with the tunneling current model, transmission electron microscopy, and secondary ion mass spectroscopy to explore the switching mechanism.
View Article and Find Full Text PDFWe have successfully fabricated nanometer-scale carbon nanotube field effect transistors (CNT FETs) on a flexible and transparent substrate by electron-beam lithography. The measured current-voltage data show good hole conduction FET characteristics, and the on/off ratio of the current is more than 10(2). The conductance (as well as current) systematically decreases with the increase of the strain, suggesting that the bending of the substrate still affects the deformation condition of the short channel CNT FETs.
View Article and Find Full Text PDFTop-gate ZnO nanowire field-effect transistors (FETs) with Al2O3 gate dielectric layers as storage nodes were fabricated and their memory effects were characterized in this work. The Al2O3 layers deposited on the ZnO nanowire channels were utilized not only as gate dielectric ones but also as charge trapping ones. For a representative top-gate ZnO nanowire FET, its I(DS)-V(GS) characteristics for the double sweep of the gate voltages exhibit the counterclockwise hysteresis and the threshold voltage shift.
View Article and Find Full Text PDFThe memory characteristics of top-gate single ZnO nanowire-based field-effect transistors (FETs) with floating gate nodes consisting of Au nanoparticles on top of the nanowire channels were investigated in this study. Au nanoparticles, synthesized by a thermal deposition of Au thin film and by a subsequent thermal annealing procedure, were embedded in between Al2O3 tunneling and control gate layers deposited on ZnO nanowire channels. For a representative single ZnO nanowire-based FET with floating gate nodes consisting of Au nanoparticles embedded between Al2O3 layers, its drain current versus gate voltage (I(DS)-V(DS)) characteristics for a double sweep in the gate voltage range from -4 to 4 V exhibit a clockwise hysteresis loop with a threshold voltage shift of deltaV(th) = 1.
View Article and Find Full Text PDFClin Exp Otorhinolaryngol
September 2008
Objectives: To compare the velopharyngeal function, swallowing and speech of the conventional and modified radial forearm free flap (RFFF) for soft palate reconstruction.
Methods: Retrospective clinical study. Twenty-eight patients who underwent oropharyngeal reconstruction with RFFF were divided into two groups: 10 patients had conventional folded RFFF and 18 patients underwent modified method.
The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al(2)O(3) tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.
View Article and Find Full Text PDFElectrical characteristics of NOT and NAND logic circuits fabricated using top-gate ZnO nanowire field-effect transistors (FETs) with high-k Al(2)O(3) gate layers were investigated in this study. To form a NOT logic circuit, two identical FETs whose I(on)/I(off) ratios were as high as ∼10(8) were connected in series in a single ZnO nanowire channel, sharing a common source electrode. Its voltage transfer characteristics exhibited an inverting operation and its logic swing was 98%.
View Article and Find Full Text PDF