A repetitive sequence-based polymerase chain reaction (rep-PCR) technique utilizing a semiautomated system, namely DiversiLab, was applied to determine the genotypes of and obtained from slaughterhouses. Twenty-four and 16 isolates from pigs and Hanwoo cattle from three slaughterhouses were used to create a DNA fingerprint library with the system software. Scatterplots demonstrated that rep-PCR groupings of isolates were in good agreement with their origins.
View Article and Find Full Text PDFRNA interference (RNAi) is a mechanism in which small interfering RNA (siRNA) silences a target gene. Herein, we describe a DNA hydrogel capable of producing siRNA and interfering with protein expression. This RNAi-exhibiting gel (termed I-gel for interfering gel) consists of a plasmid carrying the gene transcribing siRNA against the target mRNA as part of the gel scaffold.
View Article and Find Full Text PDFGiven the increased interest in public hygiene due to outbreaks of food poisoning, increased emphasis has been placed on developing novel monitoring systems for point-of-care testing (POCT) to evaluate pathogens causing foodborne illnesses. Here, we demonstrate a pathogen evaluation system utilizing simple film-based microfluidics, featuring simultaneous gene amplification, solution mixing, and electrochemical detection. To minimize and integrate the various functionalities into a single chip, patterned polyimide and polyester films were mainly used on a polycarbonate housing chip, allowing simple fabrication and alignment, in contrast to conventional polymerase chain reaction, which requires a complex biosensing system at a bench-top scale.
View Article and Find Full Text PDFExpression profiling of multiple microRNAs (miRNAs) generally provides valuable information for understanding various biological processes. Thus, it is necessary to develop a sensitive and accurate miRNA assay suitable for multiplexing. Isothermal exponential amplification reaction (EXPAR) has received significant interest as an miRNA analysis method because of high amplification efficiency.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are important regulators of gene translation and have been suggested as potent biomarkers in various disease states. In this study, we established an efficient method for simultaneous determination of multiple miRNA levels, employing the previously developed SPC-SBE (solid phase capture-single base extension) approach and MALDI-TOF mass spectrometry (MS). In this approach, we first perform reverse transcription of miRNAs extracted using stem-loop primers.
View Article and Find Full Text PDFAberrant DNA methylation is a potential diagnostic marker for complex diseases, such as cancer. With the increase in the number of genes known to exhibit disease-associated aberrant methylation, the need for accurate multiplex assays for quantifying DNA methylation has increased. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is one method that has been highlighted in this context.
View Article and Find Full Text PDFIn systems biological studies, precise expression profiling of functionally important gene sets is crucial. Real-time polymerase chain reaction is generally used for this purpose. Despite its widespread acceptance, however, this method is not suitable for multiplex analysis, resulting in an inefficient assay process.
View Article and Find Full Text PDFAmong the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products.
View Article and Find Full Text PDFSensitive multiplex detection methods for foodborne pathogens are important in controlling food safety, and detection of genetic markers is accepted to be one of the best tools for sensitive detection. Although CE technology offers great potential in terms of sensitive multiplex detection, the necessary amplification is confined to markers sharing common primers such as the 16S rRNA gene. For precise and sensitive detection, pathogen-specific genes are optimal markers.
View Article and Find Full Text PDF