Recycling waste Ni-Cd batteries has received much attention recently because of the serious environmental pollution they cause and to avoid the dissipation of valuable metals. Despite significant research, it is still difficult to efficiently recycle valuable and hazardous metals from waste Ni-Cd batteries in an economical and environmentally friendly manner. This study employed a novel process utilizing ultrasound-assisted leaching to recover Ni, Cd, and Co from waste nickel-cadmium (Ni-Cd) batteries.
View Article and Find Full Text PDFIn this paper, we explore the development of a multi-functional surface designed to tackle the challenges posed by (), a common opportunistic pathogen. Infections caused by during surgical procedures highlight the need for effective strategies to inhibit its adhesion, growth, and colonization, particularly on the surfaces of invasive medical devices. Until now, most existing research has focused on nanopillar structures (positive topographies).
View Article and Find Full Text PDFLignin is generally considered to be a renewable and sustainable resource of aromatic chemicals. However, the depolymerization of Kraft lignin (KL) for the production of selective phenolic monomers presents a significant challenge due to its highly recalcitrant nature. Therefore, in this work, we investigated the effect of metal sites and acid active sites on Mo/SBA-15, Co/SBA-15 and CoMo/SBA-15 catalysts in supercritical ethanol for the depolymerization of KL to produce phenolic monomers.
View Article and Find Full Text PDFRecently, friction stir welding of dissimilar materials has emerged as one of the most significant issues in lightweight, eco-friendly bonding technology. In this study, we welded the torsion beam shaft-an automobile chassis component-with cast aluminum to lighten it. The study rapidly and economically investigated the effects of friction stir welding and process parameters for A357 cast aluminum and FB590 high-strength steel; 14 decomposition experiments were conducted using a definitive screening design that could simultaneously determine the effects of multiple factors.
View Article and Find Full Text PDFTo date, a method of attaching a FRP (fiber-reinforced polymer) to concrete members with epoxy has been widely applied to increase the strength of the member. However, there are cases in which the adhesion of the epoxy deteriorates over time and the reinforcing effect of the FRP is gradually lost. Therefore, monitoring whether or not the reinforcing effect is properly maintained is needed in order to prevent a decrease in the structural performance of the member improved by FRP reinforcement.
View Article and Find Full Text PDFTo date, numerous studies have explored recycling of lithium, nickel, cobalt, and manganese (NCM) from spent lithium-ion batteries (LIBs). Nevertheless, the leaching and efficient separation of the precious metals from NCM active cathode material via an environmentally benign and economical process is still challenging. Therefore, in this research, we present a novel and energy an efficient route through which to leach valuable metals, for example, lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn) from the NCM cathode material of the waste LIBs using water-containing waste chlorinated polyvinyl chloride (CPVC) or polyvinyl chloride (PVC) in a batch reactor.
View Article and Find Full Text PDFIn this study, soil washing is applied for the remediation of heavy-metal (Pb, Cu and Zn) contaminated paddy soil located near an abandoned mine area. FeCl washing solutions were used in bench-scale soil washing experiments at concentrations in the range of 0.1 to 1 M.
View Article and Find Full Text PDFThis study presents the development of an effective and environmentally friendly method to leach and to recover valuable metals, such as lithium (Li) and cobalt (Co) from the spent lithium-ion batteries (LIBs) using subcritical water assisted by nickel catalyst and waste chlorinated polyvinyl chloride (CPVC). The effects of reaction parameters, such as Ni concentration, temperature, time, and liquid-solid ratio on the leaching efficiencies of Li and Co were carefully investigated. The solid residues obtained thereof were characterized by XRD and SEM-EDS analyses, while the leachates were analyzed by ICP-OES.
View Article and Find Full Text PDFThe objective of this study was to determine leaching efficiency of Li and Co from spent lithium-ion batteries (LIBs) by using waste chlorinated polyvinyl chloride (CPVC) in hydrothermal subcritical water process. Waste CPVC was used as the source of HCl to speed up leaching efficiency. Effects of temperature, time, LiCoO: CPVC mass ratio and liquid-solid ratio on leaching efficiencies of Li and Co were investigated.
View Article and Find Full Text PDFThe Gami-Chunggan formula (GCF) is a modification of the Chunggan (CG) decoction, which has been used to treat movement disorders such as Parkinson's disease (PD) in Traditional East Asian Medicine. To evaluate the neuroprotective effects of GCF in chronic PD animal models, we used either a 5-week treatment of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with probenecid (MPTP/p) or the α-synuclein A53T overexpressed PD mouse model. C57BL/6 mice were treated with MPTP, in combination with probenecid, for 5 weeks.
View Article and Find Full Text PDFElectrical stimulation of cells and tissues for therapeutic benefit is a well-established method. Although animal studies can emulate the complexity of an organism's physiology, lab-on-a-chip platforms provide a suitable primary model for follow-up animal studies. Thus, inexpensive and easy-to-use platforms for in vitro human cell studies are required.
View Article and Find Full Text PDFLead (Pb) and zinc (Zn) contaminated rice paddy soil was stabilized using natural (NSF) and calcined starfish (CSF). Contaminated soil was treated with NSF in the range of 0-10 wt% and CSF in the range of 0-5 wt% and cured for 28 days. Toxicity characteristic leaching procedure (TCLP) test was used to evaluate effectiveness of starfish treatment.
View Article and Find Full Text PDFArch Environ Contam Toxicol
April 2018
Soil samples from school playground of Gwangju City were analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), and the soil contamination status and the potential cancer risk for students and adults were investigated. Soil samples were collected from 57 sites from 5 districts of Gwangju City in the summer of 2013. Regardless of the sampling site, the ∑PAHs concentrations ranged from 13.
View Article and Find Full Text PDFSuccessful remediation of soil with co-existing organics contaminants and arsenic (As) is a challenge as the chemical and remediation technologies are different for each group of pollutants. In this study, the treatment effectiveness of the pressurized hot water (PHW) extraction process was investigated for remediation of soil co-contaminated with phenol, crude oil, polycyclic aromatic hydrocarbons (PAHs), and As. An elimination percentage of about 99% was achieved for phenol, and in the range of 63-100% was observed for the PAHs at 260°C for 90 min operation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2017
In several previous studies, the efficacy of various liming waste materials on the immobilization of heavy metals has been tested and it was found that soils contaminated with heavy metals can be stabilized using this technique. Since lime (CaO) has been identified as the main phase of calcined cockle shell (CCS), it was hypothesized that CCS could be used as a soil amendment to immobilize heavy metals in soil. However, to date, no studies have been conducted using CCS.
View Article and Find Full Text PDFImmobilization of Pb in contaminated soil by hydrothermal treatment (HT) under subcritical conditions was investigated using a lab-scale apparatus. The Pb immobilization was evaluated thorough investigating the transformation of Pb fractions and by single chemical extraction. The results showed that HT and treatment temperature significantly affected the immobilization through redistribution of Pb fractions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2017
Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured.
View Article and Find Full Text PDFThe chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices.
View Article and Find Full Text PDFA novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S.
View Article and Find Full Text PDFCo-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal.
View Article and Find Full Text PDFIn this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range.
View Article and Find Full Text PDFBull Environ Contam Toxicol
March 2015
Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.
View Article and Find Full Text PDFThe use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.
View Article and Find Full Text PDFAccelerated one-dimensional unconfined swell tests were conducted for ferrous sulfate chromite ore processing residue (COPR) field-treated samples. The field-treated samples were subjected to wet and dry cycles over 100 days to accelerate the lithification of the samples. Parallel laboratory experiments were performed to investigate the effects of mineralogy on COPR swell under controlled conditions.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are one of the excision compounds listed at the Stockholm convention in 2001. Although their use has been heavily restricted, PCBs can be found in some specific site-contaminated soils. Either removal or destruction is required prior to disposal.
View Article and Find Full Text PDF