IEEE Trans Biomed Circuits Syst
September 2024
This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 x 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations.
View Article and Find Full Text PDFWe present the fabrication of 4 K-scale electrochemical random-access memory (ECRAM) cross-point arrays for analog neural network training accelerator and an electrical characteristic of an 8 × 8 ECRAM array with a 100% yield, showing excellent switching characteristics, low cycle-to-cycle, and device-to-device variations. Leveraging the advances of the ECRAM array, we showcase its efficacy in neural network training using the Tiki-Taka version 2 algorithm (TTv2) tailored for non-ideal analog memory devices. Through an experimental study using ECRAM devices, we investigate the influence of retention characteristics on the training performance of TTv2, revealing that the relative location of the retention convergence point critically determines the available weight range and, consequently, affects the training accuracy.
View Article and Find Full Text PDFOne of the most common diseases in high-performance German Holstein dairy cows is left-sided displacement of the abomasum (LDA). Hypomotility of the abomasum is detrimental during the pathogenesis of LDA. It is known that improper interactions between the gut microbiota and the enteric nervous system contribute to dysfunctions of gastrointestinal motility.
View Article and Find Full Text PDF