Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF-NGC) consisting of electrospun poly(lactide-co-caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF-NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells.
View Article and Find Full Text PDFWe derived a new analytic physical model for describing the temperature-dependent dielectric permittivities εe(T) and εo(T) in anisotropic mesophase molecules of nematic liquid crystals (NLCs). These temperature-dependent dielectric properties of NLCs could be explained by a six-parameter dielectric permittivity model, where the analytic dielectric permittivity curves of εe(T), εo(T), and Δε(T) from the model using the six parameters ε*, Aε, Bε, (Δε)o, λε, and T* showed excellent agreement with experimental data. The six-parameter dielectric permittivity model was compared to the conventional four-parameter refractive index model.
View Article and Find Full Text PDF