Three-dimensional cultures in a microfabricated environment provide in vivo-like conditions for cells, and have been used in a variety of applications in basic and clinical studies. In this study, the contractility of cardiomyocytes in a 3D environment using complex 3D hybrid biopolymer microcantilevers was quantified and compared with that observed in a 2D environment. By measuring the deflections of the microcantilevers with different surfaces and carrying out finite element modeling (FEM) of the focal pressures of the microcantilevers, it was found that the contractile force of high-density cardiomyocytes on 3D grooved surfaces was 65-85% higher than that of cardiomyocytes on flat surfaces.
View Article and Find Full Text PDFWe developed a novel method to fabricate a crab-like microrobot that can actuate for a long period in a physiological condition. The microrobot backbone was built with a biocompatible and elastic material-polydimethylsiloxane (PDMS)-by using a specially designed 3D molding aligner, and consisted of three strips of PDMS "legs" connected across a "body." Cardiomyocytes were then plated on the grooved top surface of the backbone, resulting in a high concentration of pulsating cells.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
March 2008
Three dimensional cultures in a microfabricated environment provide in vivo-like conditions to cells, and have used in a variety of applications in basic and clinical studies. Also, the analysis of the contractility of cardiomyocytes is important for understanding the mechanism of heart failure as well as the molecular alterations in diseased heart cells. This paper presents a realistic computational model, which considers the three dimensional fluid-structural interactions (FSI), to quantify the contractile force of cardiomyocytes on hybrid biopolymer microcantilevers.
View Article and Find Full Text PDFThis paper presents a hybrid micropump actuated by the up-down motion of a dome shaped cell-polymer membrane composite. The contractile force induced from self-beating cardiomyocytes cultured on the membrane causes shrinkage and relaxation of a microchamber, leading to a flow in a microchannel. Flow direction is controlled by the geometry of diffuser/nozzle in the microchannel.
View Article and Find Full Text PDFQuantitatively analysis of the contractility of cardiomyocytes is important for understanding the mechanism of heart failure as well as the molecular alterations in diseased heart cells. This paper presents a realistic computational model, which considers the three-dimensional fluid-structural interactions (FSI), to quantify the contractile force of cardiomyocytes on hybrid biopolymer microcantilevers. Prior to this study, only static modeling of the microscale cellular force has been reported.
View Article and Find Full Text PDF