Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces.
View Article and Find Full Text PDFReactive zero valent iron nanoparticles can degrade toxic nonaqueous phase liquids (NAPL) rapidly in contaminated groundwater to nontoxic products in situ, provided they can be delivered preferentially to the NAPL/water (oil/water) interface. This study demonstrates the ability of novel triblock copolymers to modify the nanoiron surface chemistry in a way that both promotes their colloidal stability in aqueous suspension and drives their adsorption to the oil/water interface. The ability of the copolymers to drive adsorption is demonstrated by the ability of copolymer-modified iron nanoparticles, but not the unmodified iron nanoparticles, to stabilize oil-in-water emulsions.
View Article and Find Full Text PDF