Publications by authors named "Jeong-Seob Won"

The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms.

View Article and Find Full Text PDF

Stem cell-based therapeutics are amongst the most promising next-generation therapeutic approaches for the treatment of spinal cord injury (SCI), as they may promote the repair or regeneration of damaged spinal cord tissues. However, preclinical optimization should be performed before clinical application to guarantee safety and therapeutic effect. Here, we investigated the optimal injection route and dose for adult human multipotent neural cells (ahMNCs) from patients with hemorrhagic stroke using an SCI animal model.

View Article and Find Full Text PDF

Adult human multipotent neural cell (ahMNC) is a candidate for regeneration therapy for neurodegenerative diseases. Here, we developed a primary clump culture method for ahMNCs to increase the efficiency of isolation and in vitro expansion. The same amount of human temporal lobe (1 g) was partially digested and then filtered through strainers with various pore sizes, resulting in four types of clumps: Clump I > 100 µm, 70 µm < Clump II < 100 µm, 40 µm < Clump III < 70 µm, and Clump IV < 40 µm.

View Article and Find Full Text PDF

Stem cells could be the next generation therapeutic option for neurodegenerative diseases including spinal cord injury (SCI). However, several critical factors such as delivery method should be determined before their clinical applications. Previously, we have demonstrated that lateral ventricle (LV) injection as preclinical simulation could be used for intrathecal administration in clinical trials using rodent animal models.

View Article and Find Full Text PDF

Neural stem cells are emerging as a regenerative therapy for spinal cord injury (SCI), since they differentiate into functional neural cells and secrete beneficial paracrine factors into the damaged microenvironment. Previously, we successfully isolated and cultured adult human multipotent neural cells (ahMNCs) from the temporal lobes of epileptic patients. In this study, we investigated the therapeutic efficacy and treatment mechanism of ahMNCs for SCI using rodent models.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify the best delivery method for intrathecal cell therapy in spinal cord injury clinical trials during the preclinical stage.
  • Researchers used in vivo optical imaging to track the distribution of Cy5.5 fluorescent dye injected into either the lateral ventricle or cisterna magna of rats over time.
  • Results showed that injections in the lateral ventricle resulted in a significantly higher and more sustained delivery of the dye to the thoracic and lumbar spinal cord regions compared to the cisterna magna, suggesting the lateral ventricle as a better route for therapeutic applications.
View Article and Find Full Text PDF