Publications by authors named "Jeong-Ik Lee"

Importance: The intravenous administration of adipose tissue-derived mesenchymal stem cells (AdMSCs) in veterinary medicine is a promising regenerative therapy, but it can lead to severe complications, including pulmonary thromboembolism (PTE).

Objective: As part of an ongoing study, this study examined the impact of medications, such as heparin, aspirin, and sodium nitroprusside (SNP), on the factors linked to PTE after an intravenous injection of canine mesenchymal stem cell into experimental animals.

Methods: Fluorescently labeled canine AdMSCs were administered intravenously into the tail veins of five-week-old male BALB/c hairless mice.

View Article and Find Full Text PDF

Companion animals, such as dogs and cats, have gained considerable attention in translational medicine due to their potential as models for human diseases. The use of these animals in research has opened new avenues for developing treatments that can benefit both human and veterinary patients, aligning with the One Health approach. Unlike traditional laboratory models like mice, rats, and rabbits, companion animals naturally develop diseases that closely mirror those in humans, including but not limited to diabetes, aging, cancer, and neurological disorders, making them particularly valuable in translational research.

View Article and Find Full Text PDF

Ginseng is a traditional herbal medicine with a long history of use for the prevention and/or treatment of various diseases. Ginseng is used worldwide as a functional food to maintain human health. In addition, ginseng has been used as a raw ingredient in cosmetics with various applications, ranging from skin toning to anti-aging.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC) therapy has been actively applied in veterinary regenerative medicine to treat various canine and feline diseases. With increasing emphasis on safe cell-based therapies, evaluations of their tumorigenic potential are in great demand. However, a direct confirmation of whether tumors originate from stem cells or host cells is not easily achievable.

View Article and Find Full Text PDF

Fluorescence probe is one of the most powerful tools for cellular imaging. Here, three phospholipid-mimicking fluorescent probes (FP1-FP3) comprising fluorescein and two lipophilic groups of saturated and/or unsaturated C18 fatty acids were synthesized, and their optical properties were investigated. Like in biological phospholipids, the fluorescein group acts as a hydrophilic polar headgroup and the lipid groups act as hydrophobic non-polar tail groups.

View Article and Find Full Text PDF

Fenbendazole (FZ) is a benzimidazole carbamate drug with broad-spectrum antiparasitic activity in humans and animals. The mechanism of action of FZ is associated with microtubular polymerization inhibition and glucose uptake blockade resulting in reduced glycogen stores and decreased ATP formation in the adult stages of susceptible parasites. A completely cured case of lung cancer became known globally and greatly influenced the cancer community in South Korea.

View Article and Find Full Text PDF

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic disease characterized by incapacitating pelvic pain. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are considered key mediators of the paracrine action of MSCs and show better biological activities than the parent MSCs, especially in the bladder tissue, which may be unfavorable for MSC survival. Here, we produced MSC-EVs using advanced three-dimensional (a3D) culture with exogenous transforming growth factor-β3 (TGF-β3) (T-a3D-EVs).

View Article and Find Full Text PDF

Drug repositioning, the approach of discovering different uses for existing drugs, has gained enormous popularity in recent years in the anticancer drug discovery field due to the increasing demand for anticancer drugs. Additionally, the repurposing of veterinary antiparasitic drugs for the treatment of cancer is gaining traction, as supported by existing literature. A prominent example is the proposal to implement the use of veterinary antiparasitics such as benzimidazole carbamates and halogenated salicylanilides as novel anticancer drugs.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) have favorable characteristics that render them a potent therapeutic tool. We tested the characteristics of MSCs after temporal storage in various carrier solutions, such as 0.9% saline (saline), 5% dextrose solution (DS), heparin in saline, and Hartmann's solution, all of which are approved by the U.

View Article and Find Full Text PDF
Article Synopsis
  • Benzimidazole (BI)-doped layer-by-layer graphene displays different optical properties compared to intrinsic graphene due to its unique stratified structure formed during doping.
  • The study used advanced techniques like transmission electron microscopy and X-ray photoelectron spectroscopy to analyze this stratified geometry and its effects on optical behavior.
  • When modeling organic light-emitting diodes with these BI-doped graphene electrodes, the new approach shows improved accuracy in predicting efficiency and emission spectra compared to models using undoped graphene's properties.
View Article and Find Full Text PDF
Article Synopsis
  • Recent interest in air pollution sensors using organic transistors is hindered by low responsiveness and slow reaction times due to the properties of organic semiconductors and thick active layers.
  • This study explores the use of a porous material, ZIF-8, as an analyte channel for enhancing these sensors, comparing it to various carbonized versions.
  • The results showed that the polythiophene/ZIF-8 hybrid films significantly improved the sensor's performance, but the carbonized ZIFs did not enhance detection efficiency due to structural issues.
View Article and Find Full Text PDF

Rubrene-based electrochemiluminescence (r-ECL) cells with two different solvent systems is prepared, one in a co-solvent system with a mixture of 1,2-dichlorobenzene and propylene carbonate (DCB : PC, v/v 3 : 1) and another in a single solvent system of tetrahydrofuran (THF), as the medium to form a liquid-electrolyte (L-El). By simply changing the solvent systems, from the co-solvent DCB : PC (v/v 3 : 1) to the single solvent THF, with the same amount of electrochemiluminescent rubrene (5 mM) and Li-based salt, a dramatically enhanced brightness of over 30 cd m is observed for the r-ECL cell in L-El which is approximately 7-times higher than the brightness of 5 cd m observed for the r-ECL in L-El.

View Article and Find Full Text PDF

Gintonin, a novel ginseng-derived glycolipoprotein complex, has an exogenous ligand for lysophosphatidic acid (LPA) receptors. However, recent lipid analysis of gintonin has shown that gintonin also contains other bioactive lipids besides LPAs, including linoleic acid and lysophosphatidylinositol (LPI). Linoleic acid, a free fatty acid, and LPI are known as ligands for the G-protein coupled receptors (GPCR), GPR40, and GPR55, respectively.

View Article and Find Full Text PDF

The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time.

View Article and Find Full Text PDF

Background: Recently, biplanar fluoroscopy is used to evaluate the cervical kinematics, especially to locate the instant center of rotation (ICR) during motion. This study aims to ascertain the ICR at each cervical segment in the sagittal plane during dynamic motion and assess the differences from previous studies.

Methods: While three healthy subjects were performing full flexion-extension, two oblique views aligned horizontally and angled at approximately 55° were obtained by biplanar fluoroscopy.

View Article and Find Full Text PDF

Background: The functional quality of insulin-secreting islet beta cells is a major factor determining the outcome of clinical transplantations for diabetes. It is therefore of importance to develop methodological strategies aiming at optimizing islet cell function prior to transplantation. In this study we propose a synthetic biology approach to genetically engineer cellular signalling pathways in islet cells.

View Article and Find Full Text PDF

Stem cell therapy has prompted the expansion of veterinary medicine both experimentally and clinically, with the potential to contribute to contemporary treatment strategies for various diseases and conditions for which limited or no therapeutic options are presently available. Although the application of various types of stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue-derived mesenchymal stem cells (AT-MSCs), and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), has promising potential to improve the health of different species, it is crucial that the benefits and drawbacks are completely evaluated before use. Umbilical cord blood (UCB) is a rich source of stem cells; nonetheless, isolation of mesenchymal stem cells (MSCs) from UCB presents technical challenges.

View Article and Find Full Text PDF

Modification of multilayer graphene films was investigated for a cathode of organic light-emitting diodes (OLEDs). By doping the graphene/electron transport layer (ETL) interface with Li, the driving voltage of the OLED was reduced dramatically from 24.5 to 3.

View Article and Find Full Text PDF

Recently, we have addressed that a formation mechanism of a nanolens array (NLA) fabricated by using a maskless vacuum deposition is explained as the increase in surface tension of organic molecules induced by their crystallization. Here, as another research using finite difference time domain simulations, not electric field intensities but transmitted energies of electromagnetic waves inside and outside top-emitting blue organic light-emitting diodes (TOLEDs), without and with NLAs, are obtained, to easily grasp the effect of NLA formation on the light extraction of TOLEDs. Interestingly, the calculations show that NLA acts as an efficient light extraction structure.

View Article and Find Full Text PDF

For environmental reason, buildings increasingly install smart windows, which can dim incoming daylight based on active electrochromic devices (ECDs). In this work, multi-layered graphene (MLG) was investigated as an ECD window electrode, to minimize carbon dioxide (CO) emissions by decreasing the electricity consumption for building space cooling and heating and as an alternative to the transparent conductor tin-doped indium oxide (ITO) in order to decrease dependence on it. Various MLG electrodes with different numbers of graphene layers were prepared with environmentally friendly poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) to produce ECD cells.

View Article and Find Full Text PDF

We propose an effective way to enhance the out-coupling efficiencies of organic light-emitting diodes (OLEDs) using graphene as a transparent electrode. In this study, we investigated the detrimental adsorption and internal optics occurring in OLEDs with graphene anodes. The optical out-coupling efficiencies of previous OLEDs with transparent graphene electrodes barely exceeded those of OLEDs with conventional transparent electrodes because of the weak microcavity effect.

View Article and Find Full Text PDF

With increasing demand for transparent conducting electrodes, graphene has attracted considerable attention, owing to its high electrical conductivity, high transmittance, low reflectance, flexibility, and tunable work function. Two faces of single-layer graphene are indistinguishable in its nature, and this idea has not been doubted even in multilayered graphene (MLG) because it is difficult to separately characterize the front (first-born) and the rear face (last-born) of MLG by using conventional analysis tools, such as Raman and ultraviolet spectroscopy, scanning probe microscopy, and sheet resistance. In this paper, we report the striking difference of the emission pattern and performance of transparent organic light-emitting diodes (OLEDs) depending on the adopted face of MLG and show the resolved chemical and physical states of both faces by using depth-selected absorption spectroscopy.

View Article and Find Full Text PDF

Immune tolerance at feto-maternal interfaces is a complex phenomenon. Although maternal decidual macrophages are well-known immune cells, little is known about fetal-derived macrophages (Hofbauer cells) within chorionic villi. Preeclampsia (PE) is a major cause of maternal mortality in the field of obstetrics, and the innate immunological role of maternal decidual macrophages is well known.

View Article and Find Full Text PDF

In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.

View Article and Find Full Text PDF