The balance between cellular proliferation and apoptosis and the regulation of cell differentiation must be established to maintain tissue homeostasis. These cellular responses involve the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dysregulation is implicated in diverse diseases, including cancer.
View Article and Find Full Text PDFSialic acid (SA) is present in glycoconjugates and important in cell-cell recognition, cell adhesion, and cell growth and as a receptor. Among the four mammalian sialidases, cytosolic NEU2 has a pivotal role in muscle and neuronal differentiation in vitro. However, its biological functions in vivo remain unclear due to its very low expression in humans.
View Article and Find Full Text PDFAlterations in sialylation of terminal residues of glycoproteins have been implicated in forming tumor-associated glycans. ST6GALNAC transfers sialyl moiety to N-acetylgalactosamine residue via α2,6 linkage. Although the oncogenic characteristics of ST6GALNACI or II have been demonstrated in various cancer cells, the impact of ST6GALNACIII on tumor progression remains undefined.
View Article and Find Full Text PDFThe α-galactosyl epitope is a terminal -glycan moiety of glycoproteins found in mammals except in humans, and thus, it is recognized as an antigen that provokes an immunogenic response in humans. Accordingly, it is necessary to analyze the α-galactosyl structure in biopharmaceuticals or organ transplants. Due to an identical glycan composition and molecular mass between α-galactosyl -glycans and hybrid/high-mannose-type -glycans, it is challenging to characterize α-galactosyl epitopes in -glycoproteins using mass spectrometry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
The Hippo pathway controls organ size and tissue homeostasis by regulating cell proliferation and apoptosis. The LATS-mediated negative feedback loop prevents excessive activation of the effectors YAP/TAZ, maintaining homeostasis of the Hippo pathway. YAP and TAZ are hyperactivated in various cancer cells which lead to tumor growth.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFProtein glycosylation is known to be involved in biological progresses such as cell recognition, growth, differentiation, and apoptosis. Fucosylation of glycoproteins plays an important role for structural stability and function of N-linked glycoproteins. Although many of biological and clinical studies of protein fucosylation by fucosyltransferases has been reported, structural classification of fucosylated N-glycoproteins such as core or outer isoforms remains a challenge.
View Article and Find Full Text PDFDespite the increased interest in epigenetic research, its progress has been hampered by a lack of satisfactory tools to control epigenetic factors in specific genomic regions. Until now, many attempts to manipulate DNA methylation have been made using drugs but these drugs are not target-specific and have global effects on the whole genome. However, due to new genome editing technologies, potential epigenetic factors can now possibly be regulated in a site-specific manner.
View Article and Find Full Text PDFCellular non-membranous RNA-granules, P-bodies (RNA processing bodies, PB) and stress granules (SG), are important components of the innate immune response to virus invasion. Mechanisms governing how a virus modulates PB formation remain elusive. Here, we report the important roles of GW182 and DDX6, but not Dicer, Ago2 and DCP1A, in PB formation, and that Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection reduces PB formation through several specific interactions with viral RNA-binding protein ORF57.
View Article and Find Full Text PDFGenome editing has been harnessed through the development of CRISPR system, and the CRISPR from Prevotella and Francisella 1 (Cpf1) system has emerged as a promising alternative to CRISPR-Cas9 for use in various circumstances. Despite the inherent multiple advantages of Cpf1 over Cas9, the adoption of Cpf1 has been unsatisfactory because of target-dependent insufficient indel efficiencies. Here, we report an engineered CRISPR RNA (crRNA) for highly efficient genome editing by Cpf1, which includes a 20-base target-complementary sequence and a uridinylate-rich 3'-overhang.
View Article and Find Full Text PDFPersonalized medicine has emerged as a widely accepted trend in medicine for the efficacious and safe treatment of various diseases. It covers every medical treatment tailored according to various properties of individuals. Cancer-associated glycosylation mirrors cancer states more precisely, and this "sweet side of cancer" is thus intended to spur the development of an advanced in vitro diagnostic system.
View Article and Find Full Text PDFTALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed.
View Article and Find Full Text PDFKSHV ORF57 (MTA) promotes RNA stability of ORF59, a viral DNA polymerase processivity factor. Here, we show that the integrity of both ORF59 RNA ends is necessary for ORF57-mediated ORF59 expression and deletion of both 5' and 3' regions, or one end region with a central region, of ORF59 RNA prevents ORF57-mediated translation of ORF59. The ORF59 sequence between nt 96633 and 96559 resembles other known MTA-responsive elements (MREs).
View Article and Find Full Text PDFAberrant glycosylation-targeted disease biomarker development is based on cumulative evidence that certain glycoforms are mass-produced in a disease-specific manner. However, the development process has been hampered by the absence of an efficient validation method based on a sensitive and multiplexed platform. In particular, ELISA-based analytical tools are not adequate for this purpose, mainly because of the presence of a pair of N-glycans of IgG-type antibodies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2014
Contact inhibition has been largely elusive despite that a loss of contact inhibition is a critical event for cancer development and progression. Here, we report that PHLPP1 is a binding protein for Mst1 and it modulates the Hippo pathway by dephosphorylating Mst1 at the inhibitory Thr(387) of Mst1. Yap1 was localized predominantly in the nucleus but marginally in the cytoplasm in HeLa cells under sparse conditions, whereas the functional protein was more directed to sequestration in the cytoplasm under dense environments.
View Article and Find Full Text PDFN-Acetylglucosaminyltransferase V (GnT-V) is an enzyme that catalyzes the formation of a β1,6-N-acetylglucosamine (GlcNAc) side chain to a core mannosyl residue in N-linked glycoproteins. Besides its direct function of producing aberrant glycoproteins, it promotes cancer progression by its involvement in the stimulation of oncoproteins. Herein, we report that GnT-V guided the transcriptional activation of membrane-type matrix metalloproteinase-1 (MT1-MMP) in cancer cells.
View Article and Find Full Text PDFTissue inhibitor of metalloproteinases (TIMPs; TIMP-1, -2, -3 and -4) are endogenous inhibitor for matrix metalloproteinases (MMPs) that are responsible for remodeling the extracellular matrix (ECM) and involved in migration, invasion and metastasis of tumor cells. Unlike under normal conditions, the imbalance between MMPs and TIMPs is associated with various diseased states. Among TIMPs, TIMP-1, a 184-residue protein, is the only N-linked glycoprotein with glycosylation sites at N30 and N78.
View Article and Find Full Text PDFThere has been ongoing debate over whether tissue inhibitor of metalloproteinase-1 (TIMP-1) is pro- or anti-oncogenic. We confirmed that TIMP-1 reinforced cell proliferation in an αvβ3 integrin-dependent manner and conferred resistance against cytotoxicity triggered by TNF-α and IL-2 in WiDr colon cancer cells. The cell-proliferative effects of TIMP-1 contributed to clonogenicity and tumor growth during the onset and early phase of tumor formation in vivo and in vitro.
View Article and Find Full Text PDFNitric oxide (NO) has been proposed to regulate a diverse array of activities during plant growth, development and immune function. S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is emerging as a prototypic redox-based post-translational modification. An ARABIDOPSIS THALIANA S-NITROSOGLUTATHIONE (GSNO) REDUCTASE (AtGSNOR1) is thought to be the major regulator of total cellular SNO levels in this plant species.
View Article and Find Full Text PDFCancer treatment has been stratified by companion biomarker tests that serve to provide information on the genetic status of cancer patients and to identify patients who can be expected to respond to a given treatment. This stratification guarantees better efficiency and safety during treatment. Cancer patients, however, marginally benefit from the current companion biomarker-aided treatment regimens, presumably because companion biomarker tests are dependent solely on the mutation status of several genes status quo.
View Article and Find Full Text PDFKaposi sarcoma-associated herpesvirus (KSHV) ORF57, also known as Mta (mRNA transcript accumulation), enhances viral intron-less transcript accumulation and promotes splicing of intron-containing viral RNA transcripts. In this study, we identified KSHV PAN, a long non-coding polyadenylated nuclear RNA as a main target of ORF57 by a genome-wide CLIP (cross-linking and immunoprecipitation) approach. KSHV genome lacking ORF57 expresses only a minimal amount of PAN.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral interleukin 6 (vIL-6) that mimics many activities of human IL-6 (hIL-6). Both vIL-6 and hIL-6 play important roles in stimulating the proliferation of tumours caused by KSHV. Here, we provide evidence that a miRNA pathway is involved in regulation of vIL-6 and hIL-6 expression through binding sites in their open reading frames (ORFs).
View Article and Find Full Text PDFChanges in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) lytic infection increases the expression of viral and human interleukin-6 (vIL-6 and hIL-6, respectively), an important factor for cell growth and pathogenesis. Here, we report genome-wide analysis of viral RNA targets of KSHV ORF57 by a novel UV-cross-linking and immunoprecipitation (CLIP) assay. We identified 11 viral transcripts as putative ORF57 targets and demonstrate that vIL-6 mRNA is an authentic target of ORF57.
View Article and Find Full Text PDFProtein O-phosphorylation often occurs reciprocally with O-GlcNAc modification and represents a regulatory principle for proteins. O-phosphorylation of serine by glycogen synthase kinase-3β on Snail1, a transcriptional repressor of E-cadherin and a key regulator of the epithelial-mesenchymal transition (EMT) programme, results in its proteasomal degradation. We show that by suppressing O-phosphorylation-mediated degradation, O-GlcNAc at serine112 stabilizes Snail1 and thus increases its repressor function, which in turn attenuates E-cadherin mRNA expression.
View Article and Find Full Text PDF