Radiation therapy (RT) provides therapeutic benefits for patients with glioblastoma (GBM), but inevitably induces poorly understood global changes in GBM and its microenvironment (TME) that promote radio-resistance and recurrence. Through a cell surface marker screen, we identified that CD142 (tissue factor or F3) is robustly induced in the senescence-associated β-galactosidase (SA-βGal)-positive GBM cells after irradiation. F3 promotes clonal expansion of irradiated SA-βGal GBM cells and orchestrates oncogenic TME remodeling by activating both tumor-autonomous signaling and extrinsic coagulation pathways.
View Article and Find Full Text PDFThe primary motivation of this investigative study is trying to find an alternative treatment that can be used to slow down or treat glioblastoma due to the witnessed toxic side effects of the current drugs coupled with limited effectiveness in overall treatment. Consequently, a Chinese plant extract emodin proves to play a critical role in this investigative study since results from the Western blot and the other accompanying assays for anti-cancer effects indicate that it cannot work a lot to suppress cell migration and possible invasion, but rather emodin can be combined with radiation to give desired outcomes. Our result shows that the kind of radiation which acts well with emodin is neutron radiation rather than gamma radiation.
View Article and Find Full Text PDFTransl Cancer Res
August 2022
Liver cancer is a common malignancy worldwide, with a poor prognosis and a high recurrence rate despite the available treatment methodologies. Tumor-treating fields (TTFields) have shown good preclinical and clinical results for improving the prognosis of patients with glioblastoma and malignant pleural mesothelioma. However, there is minimal evidence for the effect of TTFields on other cancer types.
View Article and Find Full Text PDFDrug repositioning is an alternative process for drug development in cancer. Specifically, it is a strategy for the discovery of new antitumor drugs by screening previously approved clinical drugs. On the basis of this strategy, aripiprazole, an antipsychotic drug, was found to have anticancer activity.
View Article and Find Full Text PDFGlioblastoma is a deadly cancer tumor in the brain and has a survival rate of about 15 months. Despite the high mortality rate, temozolomide has proven to increase the survival rate of patients when combined with radiotherapy. However, its effects may be limited because some patients develop therapeutic resistance.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) or glioblastoma is the most deadly malignant brain tumor in adults. GBM is difficult to treat mainly due to the presence of glioblastoma stem cells (GSCs). Epidermal growth factor receptor variant III (EGFRvIII) has been linked to stemness and malignancy of GSCs; however, the regulatory mechanism of EGFRvIII is largely unknown.
View Article and Find Full Text PDFCarbon ion radiotherapy (CIRT) is more effective than conventional photon beam radiotherapy in treating osteosarcoma (OSA); however, the outcomes of CIRT alone are still unsatisfactory. In this study, we aimed to investigate whether acts as a radiosensitizer for CIRT. The OSA cell lines U2OS and KHOS were treated with carbon ion beam alone, γ-ray irradiation alone, or in combination with an mimic.
View Article and Find Full Text PDFLung cancer is one of the most common reasons for cancer-induced mortality across the globe, despite major advancements in the treatment strategies including radiotherapy and chemotherapy. Existing reports suggest that CXCR4 is frequently expressed by malignant tumor and is imperative for vascularization, tumor growth, cell migration, and metastasis pertaining to poor prognosis. In this study, we infer that CXCR4 confers resistance to ionizing radiation (IR) in nonsmall cell lung cancer (NSCLC) cells.
View Article and Find Full Text PDFPARK7 is involved in many key cellular processes, including cell proliferation, transcriptional regulation, cellular differentiation, oxidative stress protection, and mitochondrial function maintenance. Deregulation of PARK7 has been implicated in the pathogenesis of various human diseases, including cancer. Here, we aimed to clarify the effect of PARK7 on stemness and radioresistance of glioblastoma stem cells (GSCs).
View Article and Find Full Text PDFA newly diagnosed or recurrent Glioblastoma multiforme (GBM) can be treated with Tumor-treating fields (TTFields), an emerging type of alternative electric field-based therapy using low-intensity electric fields. TTFields have a penchant to arrest mitosis, eventually leading to apoptosis. Therefore, it is regarded as a potential anticancer therapy.
View Article and Find Full Text PDFGlioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors.
View Article and Find Full Text PDFDespite the importance of radiation therapy, there are few radiation-related markers available for use in clinical practice. A larger catalog of such biomarkers is required to help clinicians decide when radiotherapy should be replaced with a patient-specific treatment. Arachidonate 15-lipoxygenase (15-LOX-1) enzyme is involved in polyunsaturated fatty acid metabolism.
View Article and Find Full Text PDFTumor-treating fields (TTFs) - a type of electromagnetic field-based therapy using low-intensity electrical fields - has recently been characterized as a potential anticancer therapy for glioblastoma multiforme (GBM). However, the molecular mechanisms involved remain poorly understood. Our results show that the activation of autophagy contributes to the TTF-induced anti-GBM activity in vitro or in vivo and GBM patient stem cells or primary in vivo culture systems.
View Article and Find Full Text PDFGlioblastoma, the most common primary brain tumor in adults, is an incurable malignancy with poor short-term survival and is typically treated with radiotherapy along with temozolomide. While the development of tumor-treating fields (TTFields), electric fields with alternating low and intermediate intensity has facilitated glioblastoma treatment, clinical outcomes of TTFields are reportedly inconsistent. However, combinatorial administration of chemotherapy with TTFields has proven effective for glioblastoma patients.
View Article and Find Full Text PDFThe development of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) occurs by various mechanisms and appears to be almost inevitable, even in patients with lung cancer who initially respond well to EGFR-TKIs. Consequently, considerable efforts have been made to develop more effective EGFR-TKIs. Therefore, an understanding of the mechanisms behind TKI resistance is essential for improving EGFR-TKI therapeutic efficacy in non-small cell lung cancer (NSCLC) patients.
View Article and Find Full Text PDFCancer stem cells, a small subpopulation of cells with stem cell-like characteristics found within most solid tumors, are widely reported to be responsible for the malignancy of aggressive cancer cells, and targeting these cells presents a sound therapeutic strategy for reducing the risk of tumor relapse. In the present study, we examined the effects of an extract of Saccharina japonica (ESJ) on glioblastoma stem cells (GSCs). Saccharina japonica is a member of the Phaeophyceae (brown algae) family, which displays biological activities, including antitumor effects.
View Article and Find Full Text PDFNecrosis is a hallmark of glioblastoma (GBM) and is responsible for poor prognosis and resistance to conventional therapies. However, the molecular mechanisms underlying necrotic microenvironment-induced malignancy of GBM have not been elucidated. Here, we report that transglutaminase 2 (TGM2) is upregulated in the perinecrotic region of GBM and triggered mesenchymal (MES) transdifferentiation of glioma stem cells (GSC) by regulating master transcription factors (TF), such as C/EBPβ, TAZ, and STAT3.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common progressive and irreversible neurodegenerative disease and it is caused by neuronal death in the brain. Recent studies have shown that non-ionizing radiofrequency (RF) radiation has some beneficial cognitive effects in animal models of AD. In this study, we examined the effect of combined RF radiation on amyloid-beta (Aβ)-induced cytotoxicity in HT22 rat hippocampal neurons.
View Article and Find Full Text PDFEpidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region.
View Article and Find Full Text PDF