Biological musculature employs variable recruitment of muscle fibers from smaller to larger units as the load increases. This orderly recruitment strategy has certain physiological advantages like minimizing fatigue and providing finer motor control. Recently fluidic artificial muscles (FAM) are gaining popularity as actuators due to their increased efficiency by employing bio-inspired recruitment strategies such as active variable recruitment (AVR).
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
We investigate the effect of variable uniaxial tensile strain on the evolution of 71° ferroelastic domains in (001)-oriented epitaxial BiFeO (BFO) thin films using piezoresponse force microscopy (PFM). For this purpose, a newly designed bending stage has been employed, which allows tensile bending as wells as in situ PFM characterization. In situ PFM imaging reveals polarization-strain correlations at the nanoscale.
View Article and Find Full Text PDFThe waveguiding of surface enhanced Raman scattering (SERS) signals was demonstrated by using organic semiconducting microrods (MRs) hybridized with functionalized gold nanoparticles (Au-NPs). Organic semiconducting 1,4-bis(3,5-bis(trifluoromethyl) styryl)-2,5-dibromobenzene (TSDB) crystalline MRs were fabricated as active optical waveguiding system using a self-assembly method. The static SERS effect and the enhancement of photoluminescence were simultaneously observed for the TSDB MRs hybridized with Au-NPs.
View Article and Find Full Text PDF