Publications by authors named "Jeong W Han"

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

The chemical conversion of CO into value-added products is the key technology to realize a carbon-neutral society. One representative example of such conversion is the reverse water-gas shift reaction, which produces CO from CO. However, the activity is insufficient at ambient pressure and lower temperatures (<600 °C), making it a highly energy-intensive and impractical process.

View Article and Find Full Text PDF

The octahedral symmetry in ionic crystals can play a critical role in atomic nucleation and migration during solid-solid phase transformation. Similarly, octahedron distortion, which is characterized by Goldschmidt tolerance factor, strongly influences the exsolution kinetics in the perovskite lattice framework during high-temperature annealing. However, a fundamental study on manipulating the exsolution process by octahedron distortion is still lacking.

View Article and Find Full Text PDF

Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization.

View Article and Find Full Text PDF

Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru-O active motifs anchored on Magnéli TiO (Ru-TiO) via a straightforward wet impregnation and mild annealing is reported.

View Article and Find Full Text PDF
Article Synopsis
  • The catalytic activity of Se/DMAP for oxidative carbonylation of alcohols is significantly higher (160 times) than other catalysts, prompting a need to examine DMAP's role in this process.
  • DFT calculations indicated that the formation of the intermediate [DMAP···HSe][DMAP(CO)OR] (IV) is the most energetically preferred pathway, occurring through nucleophilic substitution.
  • DMAP functions as both a nucleophile and a hydrogen bond acceptor, which contributes to its impressive catalytic efficiency.
View Article and Find Full Text PDF

Numerous systematic methods have been developed to search for the global minimum of the potential energy surface, which corresponds to the optimal atomic structure. However, the majority of them still demand a substantial computing load due to the relaxation process that is embedded as an inner step inside the algorithm. Here, we propose a hybrid approach that combines Bayesian optimization (BO) and a local search that circumvents the relaxation step and efficiently finds the optimum structure, particularly in supported metal systems.

View Article and Find Full Text PDF

The 1T phase of MoS exhibits much higher electrocatalytic activity and better stability than the 2H phase. However, the harsh conditions of 1T phase synthesis remain a significant challenge for various extensions and applications of MoS. In this work, a simple hydrothermal-based synthesis method for the phase transition of MoS is being developed.

View Article and Find Full Text PDF

A key issue in lithium-ion batteries is understanding the solid electrolyte interphase (SEI) resulting from a reductive reaction on the anode/electrolyte interface. The presence of the SEI layer affects the transport behavior of the ions and electrons between the anode and electrolyte. Despite the influence on interfacial properties, the formation and evolution mechanism of the SEI layer are unclear owing to their complexity and dynamic nature.

View Article and Find Full Text PDF

Single-atom nanozymes (SAzymes) constitute a promising category of enzyme-mimicking materials with outstanding catalytic performance. The performance of SAzymes improves through modification of the coordination environments around the metal center. However, the catalytic turnover rates of SAzymes, which are key measures of the effectiveness of active site modifications, remain lower than those of natural enzymes, especially in peroxidase-reactions.

View Article and Find Full Text PDF

Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption.

View Article and Find Full Text PDF

Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect.

View Article and Find Full Text PDF

Advanced energy-storage devices are indispensable for expanding electric mobility applications. While anion intercalation-type redox chemistry in graphite cathodes has opened the path to high-energy-density batteries, surpassing the limited energy density of conventional lithium-ion batteries , a significant challenge remains: the large volume expansion of graphite upon anion intercalation. In this study, a novel polymeric binder and cohesive graphite cathode design for dual-ion batteries (DIBs) is presented, which exhibits remarkable stability even under high voltage conditions (>5 V).

View Article and Find Full Text PDF

Nanoparticle (NP) exsolution from perovskite-based oxides matrix upon reduction has emerged as an ideal platform for designing highly active catalysts for energy and environmental applications. However, the mechanism of how the material characteristics impacts the activity is still ambiguous. In this work, taking PrSrCoFeNbO thin film as the model system, we demonstrate the critical impact of the exsolution process on the local surface electronic structure.

View Article and Find Full Text PDF

Background: Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy.

View Article and Find Full Text PDF

Two essential characteristics that are required for hybrid electrocatalysts to exhibit higher oxygen and hydrogen evolution reaction (OER and HER, respectively) activity are a favorable electronic configuration and a sufficient density of active sites at the interface between the two materials within the hybrid. In the present study, a hybrid electrocatalyst is introduced with a novel architecture consisting of coral-like iron nitride (Fe N) arrays and tungsten nitride (W N ) nanosheets that satisfies these requirements. The resulting W N /Fe N catalyst achieves high OER activity (268.

View Article and Find Full Text PDF

Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes. In the present study, a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism. The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition.

View Article and Find Full Text PDF

Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed Mn -N -coordinated SAzymes (Mn -N -C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of Mn -N -C.

View Article and Find Full Text PDF

Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi Te materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures.

View Article and Find Full Text PDF

High-energy and long cycle lithium-sulfur (Li-S) pouch cells are limited by the insufficient capacities and stabilities of their cathodes under practical electrolyte/sulfur (E/S), electrolyte/capacity (E/C), and negative/positive (N/P) ratios. Herein, an advanced cathode comprising highly active Fe single-atom catalysts (SACs) is reported to form 320.2 W h kg multistacked Li-S pouch cells with total capacity of ≈1 A h level, satisfying low E/S (3.

View Article and Find Full Text PDF

To separately explore the importance of hydrophilicity and backbone planarity of polymer photocatalyst, a series of benzothiadiazole-based donor-acceptor alternating copolymers incorporating alkoxy, linear oligo(ethylene glycol) (OEG) side chain, and backbone fluorine substituents is presented. The OEG side chains in the polymer backbone increase the surface energy of the polymer nanoparticles, thereby improving the interaction with water and facilitating electron transfer to water. Moreover, the OEG-attached copolymers exhibit enhanced intermolecular packing compared to polymers with alkoxy side chains, which is possibly attributed to the self-assembly properties of the side chains.

View Article and Find Full Text PDF

Chemical doping can be used to tune the optoelectronic properties of conjugated polymers (CPs), extending their applications as conducting materials. Unfortunately, chemically doped CP films containing excess dopants exhibit an increase in energetic disorder upon structural alteration, and Coulomb interactions between charge carriers and dopants also affect such disorder. The increase in energetic disorder leads to a broadening of the density of states, which consequently impedes efficient charge transport in chemically doped CPs.

View Article and Find Full Text PDF

Water electrolysis is a promising solution to convert renewable energy sources to hydrogen as a high-energy-density energy carrier. Although alkaline conditions extend the scope of electrocatalysts beyond precious metal-based materials to earth-abundant materials, the sluggish kinetics of cathodic and anodic reactions (hydrogen and oxygen evolution reactions, respectively) impede the development of practical electrocatalysts that do not use precious metals. This review discusses the rational design of efficient electrocatalysts by exploiting the understanding of alkaline hydrogen evolution reaction and oxygen evolution reaction mechanisms and of the electron structure-activity relationship, as achieved by combining experimental and computational approaches.

View Article and Find Full Text PDF