Double-strand breaks (DSBs) are a formidable threat to genome integrity, potentially leading to cancer and various genetic diseases. The prolonged lifespan of mammalian oocytes increases their susceptibility to DNA damage over time. While somatic cells suppress DSB repair during mitosis, oocytes exhibit a remarkable capacity to repair DSBs during meiotic maturation.
View Article and Find Full Text PDFDNA damage is a critical threat that poses significant challenges to all cells. To address this issue, cells have evolved a sophisticated molecular and cellular process known as the DNA damage response (DDR). Among the various cell types, mammalian oocytes, which remain dormant in the ovary for extended periods, are particularly susceptible to DNA damage.
View Article and Find Full Text PDFBackground: The maintenance of spindle pole integrity is essential for spindle assembly and chromosome segregation during mitosis. However, the underlying mechanisms governing spindle pole integrity remain unclear.
Methods: ENSA was inhibited by siRNA or MKI-2 treatment and its effect on cell cycle progression, chromosome alignment and microtubule alignment was observed by immunohistochemical staining and western blotting.
Because DNA double-strand breaks (DSBs) greatly threaten genomic integrity, effective DNA damage sensing and repair are essential for cellular survival in all organisms. However, DSB repair mainly occurs during interphase and is repressed during mitosis. Here, we show that, unlike mitotic cells, oocytes can repair DSBs during meiosis I through microtubule-dependent chromosomal recruitment of the CIP2A-MDC1-TOPBP1 complex from spindle poles.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are highly toxic lesions that can cause genomic instability and can be repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR) pathways. Despite extensive studies about DSB repair pathways, the roles of each pathway during meiotic maturation in oocytes are not well understood. Here we show that oocytes selectively utilize NHEJ and HR to repair DSBs during meiotic maturation.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2022
Fungicides are a type of pesticide used to protect plants and crops from pathogenic fungi. Azoxystrobin (AZO), a natural methoxyacrylate derived from strobilurin, is one of the most widely used fungicides in agriculture. AZO exerts its fungicidal activity by inhibiting mitochondrial respiration, but its cytotoxicity to mammalian oocytes has not been studied.
View Article and Find Full Text PDFAlthough radiotherapy (RT) increases the extra centrosomes of cancer cells compared to normal cells, centrosome clustering of cancer cells with amplified centrosomes ensures bipolar mitosis for cell proliferation in response to RT. Recent evidence suggests that centrosome clustering is a tumor-selective target for improving RT in breast cancer cells. However, whether centrosome de-clustering is involved in the activation of innate immunity in response to RT remains unknown.
View Article and Find Full Text PDFDiesel exhaust particles (DEPs) are major components of ambient particulate matter and are associated with various adverse health effects. Typically, DEPs contain a vast number of organic compounds, among which 9,10-phenanthrenequinone (9,10-PQ), the quinone derivative of the polycyclic aromatic hydrocarbon phenanthrene, is one of the most abundant and toxic. 9,10-PQ can produce excessive reactive oxygen species (ROS) via redox cycling and exhibit cytotoxicity in various cells.
View Article and Find Full Text PDFThe polycyclic aromatic hydrocarbon quinone derivative 9,10-phenanthrenequinone (9,10-PQ) is one of the most abundant and toxic components found in diesel exhaust particles (DEPs). These DEPs are created during diesel fuel combustion and are considered the main source of urban air pollution. As 9,10-PQ can produce excessive reactive oxygen species (ROS) through redox cycling, it has been shown to exert potent cytotoxic effects against various cell types.
View Article and Find Full Text PDFPolystyrene (PS) is one of the most common polymers that cause plastic pollution after release into the environment. Although a growing body of evidence has shown the adverse effects of PS on living organisms including humans, their effects on mammalian oocytes have not been extensively studied. In this study, we investigated the effect of exposure to PS-nanoparticle (PS-NPs) on meiotic maturation in mouse oocytes.
View Article and Find Full Text PDFFront Cell Dev Biol
April 2022
Maintaining genome integrity in germ cells is essential not only for successful fertilization and embryo development, but also to ensure proper transmission of genetic information across generations. However, unlike oocytes, sperm are incapable of repairing DNA damage. Therefore, sperm DNA damage is repaired after fertilization in zygotes using maternal DNA repair factors.
View Article and Find Full Text PDFAs pyrazole and its derivatives have a wide range of biological activities, including anticancer activity, the design of novel pyrazole derivatives has emerged as an important research field. This study describes a novel pyrazole derivative that exerts antitumor and radiosensitizing activities in breast cancer both and . We synthesized a novel pyrazole compound N,N-dimethyl-N'-(3-(1-(4-(trifluoromethyl)phenyl)-1H-pyrazol-4-yl)phenyl)azanesulfonamide (PCW-1001) and showed that it inhibited several oncogenic properties of breast cancer both and .
View Article and Find Full Text PDFCell Mol Life Sci
March 2022
Mammalian oocytes are particularly susceptible to accumulating DNA damage. However, unlike mitotic cells in which DNA damage induces G2 arrest by activating the ATM-Chk1/2-Cdc25 pathway, oocytes readily enter M-phase immediately following DNA damage. This implies a lack of a robust canonical G2/M DNA damage checkpoint in oocytes.
View Article and Find Full Text PDFIf fertilization does not occur for a prolonged time after ovulation, oocytes undergo a time-dependent deterioration in quality and , referred to as postovulatory aging. The DNA damage response is thought to decline with aging, but little is known about how mammalian oocytes respond to the DNA damage during postovulatory aging. Here we show that increased WIP1 during postovulatory aging suppresses the capacity of oocytes to respond to and repair DNA damage.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
In eukaryotic chromosomes, the centromere and telomere are two specialized structures that are essential for chromosome stability and segregation. Although centromeres and telomeres often are located in close proximity to form telocentric chromosomes in mice, it remained unclear whether these two structures influence each other. Here we show that TRF1 is required for inner centromere and kinetochore assembly in addition to its role in telomere protection in mouse oocytes.
View Article and Find Full Text PDFA prolonged time span between ovulation and fertilization can cause postovulatory aging of oocytes, which impairs oocyte quality and subsequent embryo development. Telomere attrition has long been considered as the primary hallmark of aging or the cause of age-associated diseases. However, the status of telomere and its regulation during postovulatory oocyte aging are poorly understood.
View Article and Find Full Text PDFAlthough microtubule-associated serine/threonine kinase-like (MASTL) is a promising target for selective anticancer treatment, MASTL inhibitors with nano range potency and antitumor efficacy have not been reported. Here, we report a novel potent and selective MASTL inhibitor MASTL kinase inhibitor-2 (MKI-2) identified in silico through a drug discovery program. Our data showed that MKI-2 inhibited recombinant MASTL activity and cellular MASTL activity with IC values of 37.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2020
Dynamic changes in microtubules during cell cycle progression are essential for spindle organization to ensure proper segregation of chromosomes. There is growing evidence that post translational modifications of tubulins are the key factors that contribute to microtubule dynamics. However, how dynamic properties of microtubules are regulated in mouse oocytes is unclear.
View Article and Find Full Text PDFAlthough MASTL (microtubule-associated serine/threonine kinase-like) is an attractive target for anticancer treatment, MASTL inhibitors with antitumor activity have not yet been reported. In this study, we have presented a novel MASTL inhibitor, MKI-1, identified through screening and analysis. Our data revealed that MKI-1 exerted antitumor and radiosensitizer activities in and models of breast cancer.
View Article and Find Full Text PDFMammalian oocytes are arrested at G2/prophase of the first meiosis. After a hormone surge, oocytes resume meiosis, undergoing germinal vesicle breakdown (GVBD). This process is regulated by Cdk1/cyclin B1.
View Article and Find Full Text PDFThe delivery of exogenous molecules into mammalian oocytes or embryos has been a challenge because of the existence of the protective zona pellucida (ZP) surrounding the oocyte membrane. Here we show that exogenous translationally controlled tumor protein (TCTP) is able to translocate into oocytes across the ZP and prevents quality deterioration during in vitro culture. Recombinant TCTP-mCherry added to culture media were incorporated into oocytes after passing through the ZP.
View Article and Find Full Text PDFThe authors wish to make the following erratum to this paper [...
View Article and Find Full Text PDFSensors (Basel)
September 2019
The globalization of food distribution has made necessary to secure safe products to the general consumers through the rapid detection of harmful additives on the field. For this purpose, we developed a cuvette-type localized surface plasmon resonance (LSPR) sensor that can be easily used by consumers with conventional ultraviolet-visible light spectrophotometer for measurements. Gold nanoparticles were uniformly deposited on a transparent substrate via a self-assembly method to obtain a plasmonically active chip, and the chemical receptor p-nitroaniline (-NA) was functionalized to stabilize the device sensitivity under external temperature and pH conditions.
View Article and Find Full Text PDFMammalian oocytes remain arrested at the first prophase of meiosis in ovarian follicles for an extended period. During this protracted arrest, oocytes are remarkably susceptible to the accumulation of DNA damage. Melatonin (N-acetyl-5-methoxytryptamine), a hormone secreted by the pineal gland, has diverse effects on various physiological processes.
View Article and Find Full Text PDFIn mammals, the early embryo travels down the oviduct to the uterus and prepares for implantation. The unique features of preimplantation development include compaction followed by blastocyst formation. This first cell lineage specification involves various proteins including cell polarity regulators, kinases, and transcription factors.
View Article and Find Full Text PDF