A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation.
View Article and Find Full Text PDFThe retinal pigment epithelium (RPE) not only forms the outer blood-retinal barrier (oBRB) but also plays a multifunctional role in the ocular system. The loss of this epithelium leads to serious diseases resulting in vision impairment. No effective treatment is available for the repair of RPE damage.
View Article and Find Full Text PDFVarious synthetic and decellularized materials are being used to reconstruct peripheral nerve defects and replace autologous nerve grafts. In this study, we developed a microgel printing bath to three-dimensionally (3D) print a peripheral nervous system decellularized extracellular matrix nerve graft reinforced by a polycaprolactone (PCL) conduit. The straightforward fabrication method of an alginate microgel-supplemented printing bath allows a 30 μm filament resolution of a low viscous decellularized extracellular matrix hydrogel with neutral pH.
View Article and Find Full Text PDF3D cell printing technology is in the spotlight for producing 3D tissue or organ constructs useful for various medical applications. In printing of neuromuscular tissue, a bioink satisfying all the requirements is a challenging issue. Gel integrity and motor neuron activity are two major characters because a harmonious combination of extracellular materials essential to motor neuron activity consists of disadvantages in mechanical properties.
View Article and Find Full Text PDFRetinal degeneration is a leading cause of incurable vision loss and blindness. The increasing incidence of retinal degeneration has triggered research into the development of in vitro retinal models for drug development and retinal alternatives for transplantation. However, the complex retinal structure and the retinal microenvironment pose serious challenges.
View Article and Find Full Text PDFRetinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch's membrane. This monolayer is the main component of the outer blood-retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, the damage of this epithelium causes a wide range of diseases related to retinal degeneration including age-related macular degeneration, retinitis pigmentosa, and Stargardt disease.
View Article and Find Full Text PDFA new concept, assembling cell-laden tissue modules, is for the first time proposed for soft tissue engineering. Adipose-vascular tissue modules composed of a synthetic polymer-based substructure and customized bioinks using planar 3D cell printing are engineered. Such tissue modules are systematically assembled into a synthetic polymer-based module holder fabricated with rotational 3D printing, resulting in the development of a flexible and volumetric tissue assembly.
View Article and Find Full Text PDFThe development of artificial tissue/organs with the functional maturity of their native equivalents is one of the long-awaited panaceas for the medical and pharmaceutical industries. Advanced 3D cell-printing technology and various functional bioinks are promising technologies in the field of tissue engineering that have enabled the fabrication of complex 3D living tissue/organs. Various requirements for these tissues, including a complex and large-volume structure, tissue-specific microenvironments, and functional vasculatures, have been addressed to develop engineered tissue/organs with native relevance.
View Article and Find Full Text PDFEngineered heart tissue (EHT) has ample potential as a model for in vitro tissue modeling or tissue regeneration. Using 3D cell printing technology, various hydrogels have been utilized as bioinks to fabricate EHT to date. However, its efficacy has remained limited due to poor functional properties of the cultured cardiomyocytes stemming from a lack of proper microenvironmental cues.
View Article and Find Full Text PDFVolumetric muscle loss (VML) is an irrecoverable injury associated with muscle loss greater than 20%. Although hydrogel-based 3D engineered muscles and the decellularized extracellular matrix (dECM) have been considered for VML treatment, they have shown limited efficacy. We established a novel VML treatment with dECM bioink using 3D cell printing technology.
View Article and Find Full Text PDF3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment.
View Article and Find Full Text PDFThree-dimensional (3D) cell-printed constructs have been recognized as promising biological substitutes for tissue/organ regeneration. They provide tailored physical properties and biological cues via multi-material printing process. In particular, hybrid bioprinting, enabling to use biodegradable synthetic polymers as framework, has been an attractive method to support weak hydrogels.
View Article and Find Full Text PDF