Unlabelled: Diosgenin (DG), a well-known steroidal sapogenin, is abundantly found in the plants of the Dioscoreaceae family and exhibits diverse pharmacological properties. In our previous study, we demonstrated that DG supplementation protected from high glucose-induced lipid deposition, oxidative damage, and lifespan reduction. Nevertheless, the precise biological mechanisms underlying the beneficial effects of DG have not yet been described.
View Article and Find Full Text PDFThere is growing interest in dietary interventions, particularly gerobiotics, that directly target aging. Several single-strain gerobiotics have proven to be beneficial in alleviating aging and age-related functional declines across species, but multistrain/multispecies gerobiotics have been proven even more advantageous due to the potential synergy and additive effects among individual isolates. However, there is very limited research on how multistrain/multispecies gerobiotic combinations or cocktails extend healthy longevity.
View Article and Find Full Text PDFcan adapt and survive in dynamically changing environments by the smart and delicate switching of molecular plasticity. dauer diapause is a form of phenotypic and developmental plasticity that induces reversible developmental arrest upon environmental cues. An ER (endoplasmic reticulum)-resident Ca binding protein, calumenin has been reported to function in a variety of malignant diseases in vertebrates and in the process of muscle contraction-relaxation.
View Article and Find Full Text PDFBAM15 was recently screened as a protonophore uncoupler specifically for the mitochondrial membrane but not the plasma membrane. It is equally as potent as FCCP, but less toxic. Previously, mitochondrial uncoupling via DNP alleviates neurodegeneration in the nematode during aging.
View Article and Find Full Text PDFFood Sci Nutr
December 2020
Dietary supplementation of flavonoids has been shown to reduce the severity of neurodegenerative disorders such as dementia, Parkinson's disease, and Alzheimer's disease by their antioxidant effects. However, their low bioavailability raises the question of how much their antioxidant capacity actually contributes to the mitigating effects. The physicochemical properties of flavonoids suggest they could function as mitochondrial uncouplers.
View Article and Find Full Text PDFLymphatic filariasis and onchocerciasis caused by filarial nematodes are important diseases leading to considerable morbidity throughout tropical countries. Diethylcarbamazine (DEC), albendazole (ALB), and ivermectin (IVM) used in massive drug administration are not highly effective in killing the long-lived adult worms, and there is demand for the development of novel macrofilaricidal drugs affecting new molecular targets. A Ca binding protein, calumenin, was identified as a novel and nematode-specific drug target for filariasis, due to its involvement in fertility and cuticle development in nematodes.
View Article and Find Full Text PDFThe uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C.
View Article and Find Full Text PDFUncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4.
View Article and Find Full Text PDFC. elegans has two functional peroxidasins (PXN), PXN-1 and PXN-2. PXN-2 is essential to consolidate the extracellular matrix during development and is suggested to interact with PXN-1 antagonistically.
View Article and Find Full Text PDFRapid and efficient engulfment of apoptotic cells is an essential property of phagocytes for removal of the large number of apoptotic cells generated in multicellular organisms. To achieve this, phagocytes need to be able to continuously uptake apoptotic cells. It was recently reported that uncoupling protein 2 (Ucp2) promotes engulfment of apoptotic cells by increasing the phagocytic capacity, thereby allowing cells to continuously ingest apoptotic cells.
View Article and Find Full Text PDFThe Caenorhabditis elegans peroxidasins, PXN-1 and PXN-2, are extracellular peroxidases; pxn-2 is involved in muscle-epidermal attachment during embryonic morphogenesis and in specific axon guidance. Here we investigate potential roles of the other homologue of peroxidasin, pxn-1, in C. elegans.
View Article and Find Full Text PDFNOG1 is a nucleolar GTPase that is critical for 60S ribosome biogenesis. Recently, NOG1 was identified as one of the downstream regulators of target of rapamycin (TOR) in yeast. It is reported that TOR is involved in regulating lifespan and fat storage in Caenorhabditis elegans.
View Article and Find Full Text PDFMitochondrial fission is mediated by the dynamin-related protein Drp1 in metazoans. Drp1 is recruited from the cytosol to mitochondria by the mitochondrial outer membrane protein Mff. A second mitochondrial outer membrane protein, named Fis1, was previously proposed as recruitment factor, but Fis1(-/-) cells have mild or no mitochondrial fission defects.
View Article and Find Full Text PDFBackground: With the increasing resistance of malaria parasites to available drugs, there is an urgent demand to develop new anti-malarial drugs. Calpain inhibitor, ALLN, is proposed to inhibit parasite proliferation by suppressing haemoglobin degradation. This provides Plasmodium calpain as a potential target for drug development.
View Article and Find Full Text PDFThioredoxin reductase (TrxR) is a member of the pyridine nucleotide-disulfide reductase family, which mainly functions in the thioredoxin system. TrxR is found in all living organisms and exists in two major ubiquitous isoenzymes in higher eukaryotic cells; One is cytosolic and the other mitochondrial. Mitochondrial TrxR functions to protect mitochondria from oxidative stress, where reactive oxidative species are mainly generated, while cytosolic TrxR plays a role to maintain optimal oxido-reductive status in cytosol.
View Article and Find Full Text PDFDicarbonyl/L-xylulose reductase (DCXR) converts l-xylulose into xylitol, and reduces various α-dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. In this study, we identified DHS-21 as the only DCXR ortholog in Caenorhabditis elegans. The dhs-21 gene is expressed in various tissues including the intestine, gonadal sheath cells, uterine seam (utse) cells, the spermathecal-uterus (sp-ut) valve and on the plasma membrane of spermatids.
View Article and Find Full Text PDFShank protein is one of the postsynaptic density (PSD) proteins which play a major role in proper localization of proteins at membranes. The shn-1, a homolog of Shank in Caenorhabditis elegans, is expressed in neurons, pharynx, intestine, vulva and sperm. We have previously reported a possible genetic interaction between Shank and IP₃ receptor by examining shn-1 RNAi in IP₃ receptor (itr-1) mutant background.
View Article and Find Full Text PDFC. elegans coelomocytes are macrophage-like scavenger cells that provide an excellent in vivo system for the study of clathrin-mediated endocytosis. Using this in vivo system, several genes involved in coelomocyte endocytosis have been identified previously.
View Article and Find Full Text PDFNramp1 (natural resistance-associated macrophage protein-1) is a functionally conserved iron-manganese transporter in macrophages. Manganese (Mn), a superoxide scavenger, is required in trace amounts and functions as a cofactor for most antioxidants. Three Nramp homologs, smf-1, smf-2, and smf-3, have been identified thus far in the nematode Caenorhabditis elegans.
View Article and Find Full Text PDFCalumenin is a Ca(2+) binding protein localizing at the lumen of the endoplasmic reticulum (ER). Although it has been implicated in various diseases, the in vivo functions of calumenin are largely unknown. Here, we report that calumenin has pleiotropic roles in muscle and cuticle function in Caenorhabditis elegans.
View Article and Find Full Text PDFEnvironmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90.
View Article and Find Full Text PDFDual roles of calsequestrin (CSQ-1) being the Ca2+ donor and Ca2+ acceptor make it an excellent Ca2+-buffering protein within the sarcoplasmic reticulum (SR). We have isolated and characterized a calsequestrin (csq-1)-null mutant in Caenorhabditis elegans. To our surprise, this mutant csq-1(jh109) showed no gross defects in muscle development or function but, however, is highly sensitive to perturbation of Ca2+ homeostasis.
View Article and Find Full Text PDFCyclic nucleotide-gated (CNG) channels encoded by the tax-4 and tax-2 genes are required for chemosensing and thermosensing in the nematode C. elegans. We identified a gene in the C.
View Article and Find Full Text PDFThe Caenorhabditis elegans PMR1, a P-type Ca2+/Mn2+ ATPase, is expressed in hypodermal seam cells, intestinal cells and spermatheca; localized in Golgi complex. Knock down of pmr-1 as well as overexpression of truncated Caenorhabditis elegans PMR1, which mimics dominant mutations observed in human Hailey-Hailey disease, renders the worm highly sensitive to EGTA and Mn2+. Interestingly, pmr-1 knock down not only causes animals to become resistant to oxidative stress but also suppresses high reactive oxygen species sensitivity of smf-3 RNA-mediated interference and daf-16 worms.
View Article and Find Full Text PDF