Publications by authors named "Jeong Geol Na"

Shake flask cultivation, a cornerstone in bioprocess research encounters limitations in supplying sufficient oxygen and exchanging gases, restricting its accuracy in assessing microbial growth and metabolic activity. In this communication, we introduce an innovative gas supply apparatus that harnesses the rotational motion of a shaking incubator to facilitate continuous air delivery, effectively overcoming these limitations. We measured the mass transfer coefficient (ka) and conducted batch cultures of H36LsGAD using various working volumes to assess its performance.

View Article and Find Full Text PDF

Soluble methane monooxygenase (sMMO) oxidizes a wide range of carbon feedstocks (C1 to C8) directly using intracellular NADH and is a useful means in developing green routes for industrial manufacturing of chemicals. However, the high-throughput biosynthesis of active recombinant sMMO and the ensuing catalytic oxidation have so far been unsuccessful due to the structural and functional complexity of sMMO, comprised of three functionally complementary components, which remains a major challenge for its industrial applications. Here we develop a catalytically active miniature of sMMO (mini-sMMO), with a turnover frequency of 0.

View Article and Find Full Text PDF

Polyhydroxybutyrate (PHB) production through CH conversion by methanotrophs offers a solution for greenhouse gas emissions and plastic waste concerns. In this study, we aimed to achieve high cell density cultivation of Methylocystis sp. MJC1 for efficient PHB production.

View Article and Find Full Text PDF

Background: Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products.

Results: In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation.

View Article and Find Full Text PDF

Pyrolysis, a thermal decomposition without oxygen, is a promising technology for transportable liquids from whole fractions of lignocellulosic biomass. However, due to the hydrophilic products of pyrolysis, the liquid oils have undesirable physicochemical characteristics, thus requiring an additional upgrading process. Biological upgrading methods could address the drawbacks of pyrolysis by utilizing various hydrophilic compounds as carbon sources under mild conditions with low carbon footprints.

View Article and Find Full Text PDF

Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including and , and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited.

View Article and Find Full Text PDF
Article Synopsis
  • A new method was developed to create polyhydroxy-β-butyrate (PHB) from a gas containing methane (CH) and carbon monoxide (CO) using a collaborative process involving methanotrophs and oxygenic photogranules (OPGs) without external oxygen.
  • The study identified the importance of oxygen in this process and selected specific strains (sp. DH-1 and OB3b) for testing under different carbon conditions, finding that OB3b with OPGs was more effective for methane conversion and PHB production.
  • Limited nitrogen levels led to increased PHB accumulation, achieving a yield of 83.0 mg/L from simulated biogas while reducing the growth of the whole microbial community
View Article and Find Full Text PDF

Biodegradable polyhydroxybutyrate (PHB) can be produced from methane by some type II methanotroph such as the genus Methylocystis. This study presents the comparative genomic analysis of a newly isolated methanotroph, Methylocystis sp. MJC1 as a biodegradable PHB-producing platform strain.

View Article and Find Full Text PDF

Sustainable production of chemicals and materials from renewable non-food biomass using biorefineries has become increasingly important in an effort toward the vision of 'net zero carbon' that has recently been pledged by countries around the world. Systems metabolic engineering has allowed the efficient development of microbial strains overproducing an increasing number of chemicals and materials, some of which have been translated to industrial-scale production. Fermentation is one of the key processes determining the overall economics of bioprocesses, but has recently been attracting less research attention.

View Article and Find Full Text PDF

Reverse electrodialysis (RED) generates power directly by transforming salinity gradient into electrical energy. The ion transport properties of the ion-exchange membranes need to be investigated deeply to improve the limiting efficiencies of the RED. The interaction between "counterions" and "ionic species" in the membrane requires a fundamental understanding of the phase separation process.

View Article and Find Full Text PDF

Background: Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z.

View Article and Find Full Text PDF

Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein.

View Article and Find Full Text PDF

At present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed.

View Article and Find Full Text PDF

Gas fermentation utilizes syngas converted from biomass or waste as feedstock. A bubble column reactor for pressurizing was designed to increase the mass transfer rate between gas and liquid, and reduce energy consumption by medium agitation. Thermococcus onnurineus, a hydrogenic CO-oxidizer, was cultured initially under ambient pressure with the initial inlet gas composition; 60% CO and 40% N.

View Article and Find Full Text PDF

By facilitating electron transfer to the hydroxylase diiron center, MMOR-a reductase-serves as an essential component of the catalytic cycle of soluble methane monooxygenase. Here, the X-ray structure analysis of the FAD-binding domain of MMOR identified crucial residues and its influence on the catalytic cycle.

View Article and Find Full Text PDF

Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality.

View Article and Find Full Text PDF

Cupriavidus necator, a versatile microorganism found in both soil and water, can have both heterotrophic and lithoautotrophic metabolisms depending on environmental conditions. C. necator has been extensively examined for producing Polyhydroxyalkanoates (PHAs), the promising polyester alternatives to petroleum-based synthetic polymers because it has a superior ability for accumulating a considerable amount of PHAs from renewable resources.

View Article and Find Full Text PDF

Auto-generative high pressure digestion (AHPD) and hydrogen-injecting digestion (HID) have been introduced to directly produce high CH-content biogas from anaerobic digester. However, each approach has its own technical difficulties (pH changes), and practical issues (high cost of H) to obtain > 90% CH containing biogas, particularly, from the high-strength waste like food waste (FW). To overcome this problem, in this study, AHPD and HID were integrated, which can offset each drawback but maximize its benefit.

View Article and Find Full Text PDF

Microbial biotransformation of CH gas has been attractive for the production of energy and high-value chemicals. However, insufficient supply of CH in a culture medium needs to be overcome for the efficient utilization of CH. Here, we utilized cellulose nanocrystals coated with a tannic acid-Fe complex (TA-FeCNCs) as a medium component to enhance the gas-liquid mass-transfer performance.

View Article and Find Full Text PDF

Two putative methylglyoxal synthases, which catalyze the conversion of dihydroxyacetone phosphate to methylglyoxal, from Oceanithermus profundus DSM 14,977 and Clostridium difficile 630 have been characterized for activity and thermal stability. The enzyme from O. profundus was found to be hyperthermophilic, with the optimum activity at 80 °C and the residual activity up to 59% after incubation of 15 min at 95 °C, whereas the enzyme from C.

View Article and Find Full Text PDF

Here, we report an analysis method for determining PHA (polyhydroxyalkanoates) contents and their monomer composition in microbial cells based on pyrolysis gas chromatography combined with mass spectrometry (Py-GC/MS). Various kinds of microbial cells accumulating different PHA contents and monomer compositions were prepared through the cultivation of Ralstonia eutropha and recombinant Escherichia coli. Py-GC/MS could analyse these samples in a short time without complicated pretreatment steps.

View Article and Find Full Text PDF

The microbial electrosynthesis is a platform to supply protons and electrons to improve the conversion efficiency and production rate for the valorization of C1 gas. This study examined proton migration and electron transfer of the electrode and microbe by using various external parameters in the electrosynthesis of CO. The CO electrosynthesis achieved almost double of coulombic efficiency than the conventional CO electrosynthesis.

View Article and Find Full Text PDF

Advances in scientific technology in the early twentieth century have facilitated the development of synthetic plastics that are lightweight, rigid, and can be easily molded into a desirable shape without changing their material properties. Thus, plastics become ubiquitous and indispensable materials that are used in various manufacturing sectors, including clothing, automotive, medical, and electronic industries. However, strong physical durability and chemical stability of synthetic plastics, most of which are produced from fossil fuels, hinder their complete degradation when they are improperly discarded after use.

View Article and Find Full Text PDF

Immuno-assay is one of diagnostic methods that usually measures biomarkers associated with cancers. However, this method is complex and take a long time to analyze. To overcome these disadvantages, many immuno-sensing chips have been designed and developed.

View Article and Find Full Text PDF