The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.
View Article and Find Full Text PDFIndigo is a unique blue dye that has been used in the textile industry for centuries and is currently mass-produced commercially through chemical synthesis. However, the use of toxic substrates and reducing agents for chemical synthesis is associated with environmental concerns, necessitating the development of eco-friendly alternatives based on microbial production. In this study, a robust industrial strategy for indigo production was developed using Pseudomonas putida KT2440 as the host strain, which is characterized by its excellent ability to degrade aromatic compounds and high resistance to environmental stress.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are promising alternatives to existing petrochemical-based plastics because of their bio-degradable properties. However, the limited structural diversity of PHAs has hindered their application. In this study, high mole-fractions of Poly (39 mol% 3HB-co-17 mol% 3 HV-co-44 mol% 4 HV) and Poly (25 mol% 3HB-co-75 mol% 5 HV) were produced from 4- hydroxyvaleric acid and 5-hydroxyvaleric acid, using Cupriavidus necator PHB harboring the gene phaC with modified sequences.
View Article and Find Full Text PDFConventional statistical investigations have primarily focused on the comparison of the simple one-dimensional characteristics of protein cavities, such as number, surface area, and volume. These studies have failed to discern the crucial distinctions in cavity properties between thermophilic and mesophilic proteins that contribute to protein thermostability. In this study, the significance of cavity properties, i.
View Article and Find Full Text PDFIndigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes.
View Article and Find Full Text PDFTo alleviate environmental problems caused by using conventional plastics, bioplastics have garnered significant interest as alternatives to petroleum-based plastics. Despite possessing better degradability traits compared to traditional plastics, the degradation of bioplastics still demands a longer duration than initially anticipated. This necessitates the utilization of degradation strains or enzymes to enhance degradation efficiency, ensuring timely degradation.
View Article and Find Full Text PDFPseudomonas putida is a promising strain for lignin valorisation. However, there is a dearth of stable and efficient systems for secreting enzymes to enhance the process. Therefore, a novel secretion system for recombinant lignin-depolymerising peroxidase was developed.
View Article and Find Full Text PDFProduct inhibition caused by organic acids is a serious issue in establishing economical biochemical production systems. Herein, for enhanced production of glutaric acid by overcoming product inhibition triggered by glutaric acid, a whole-cell bioconversion system equipped with biocatalyst recycling process and in situ product recovery by adsorption was developed successfully. From the whole-cell bioconversion reaction, we found that both dissociated and undissociated forms of glutaric acid acted as an inhibitor in the whole-cell bioconversion reaction, wherein bioconversion was hindered beyond 200 mM glutaric acid regardless of reaction pH.
View Article and Find Full Text PDFOne of the key intermediates, 5-hydroxyvaleric acid (5-HV), is used in the synthesis of polyhydroxyalkanoate monomer, δ-valerolactone, 1,5-pentanediol (1,5-PDO), and many other substances. Due to global environmental problems, eco-friendly bio-based synthesis of various platform chemicals and key intermediates are socially required, but few previous studies on 5-HV biosynthesis have been conducted. To establish a sustainable bioprocess for 5-HV production, we introduced gabT encoding 4-aminobutyrate aminotransferase and yqhD encoding alcohol dehydrogenase to produce 5-HV from 5-aminovaleric acid (5-AVA), through glutarate semialdehyde in Escherichia coli whole-cell reaction.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new species with PHB-degrading ability were isolated from the soil.
View Article and Find Full Text PDFγ-Amino butyric acid (GABA) is a non-proteinogenic amino acid and a human neurotransmitter. Recently, increasing demand for food additives and biodegradable bioplastic monomers, such as nylon 4, has been reported. Consequently, considerable efforts have been made to produce GABA through fermentation and bioconversion.
View Article and Find Full Text PDFThe upcycling of poly(ethylene terephthalate) (PET) waste can simultaneously produce value-added chemicals and reduce the growing environmental impact of plastic waste. In this study, we designed a chemobiological system to convert terephthalic acid (TPA), an aromatic monomer of PET, to β-ketoadipic acid (βKA), a C6 keto-diacid that functions as a building block for nylon-6,6 analogs. Using microwave-assisted hydrolysis in a neutral aqueous system, PET was converted to TPA with Amberlyst-15, a conventional catalyst with high conversion efficiency and reusability.
View Article and Find Full Text PDFPetrochemical-based plastics cause environmental pollution and threaten humans and ecosystems. Polyhydroxyalkanoate (PHA) is considered a promising alternative to nondegradable plastics since it is eco-friendly and biodegradable polymer having similar properties to conventional plastics. PHA's material properties are generally determined by composition and type of monomers in PHA.
View Article and Find Full Text PDFγ-Aminobutyrate (GABA) is an important chemical by itself and can be further used for the production of monomer used for the synthesis of biodegradable polyamides. Until now, GABA production using harboring glutamate decarboxylases (GADs) has been limited due to the discrepancy between optimal pH for GAD activity (pH 4.0) and cell growth (pH 7.
View Article and Find Full Text PDFIn the bioproduction of glutaric acid, an emerging bioplastic monomer, α-ketoglutaric acid (α-KG) is required as an amine acceptor for 4-aminobutyrate aminotransferase (GabT)-driven conversion of 5-aminovalerate (5-AVA) to glutarate semialdehyde. Herein, instead of using expensive α-KG, an indirect α-KG supply system was developed using a relatively cheap alternative, monosodium glutamate (MSG), for l-glutamate oxidase (Gox)-based whole-cell conversion. Using 200 mM 5-AVA and 30 mM MSG initially with Gox, 67.
View Article and Find Full Text PDFLignin valorization depends on microbial upcycling of various aromatic compounds in the form of a complex mixture, including p-coumaric acid and ferulic acid. In this study, an engineered Pseudomonas putida strain utilizing lignin-derived monomeric compounds via biological funneling was developed to produce 2-pyrone-4,6-dicarboxylic acid (PDC), which has been considered a promising building block for bioplastics. The biosynthetic pathway for PDC production was established by introducing the heterologous ligABC genes under the promoter P in a strain lacking pcaGH genes to accumulate a precursor of PDC, i.
View Article and Find Full Text PDFThe production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks.
View Article and Find Full Text PDFAt present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed.
View Article and Find Full Text PDFEndo-1,4-β-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion.
View Article and Find Full Text PDFCupriavidus necator, a versatile microorganism found in both soil and water, can have both heterotrophic and lithoautotrophic metabolisms depending on environmental conditions. C. necator has been extensively examined for producing Polyhydroxyalkanoates (PHAs), the promising polyester alternatives to petroleum-based synthetic polymers because it has a superior ability for accumulating a considerable amount of PHAs from renewable resources.
View Article and Find Full Text PDFChemo-biological upcycling of poly(ethylene terephthalate) (PET) developed in this study includes the following key steps: chemo-enzymatic PET depolymerization, biotransformation of terephthalic acid (TPA) into catechol, and its application as a coating agent. Monomeric units were first produced through PET glycolysis into bis(2-hydroxyethyl) terephthalate (BHET), mono(2-hydroxyethyl) terephthalate (MHET), and PET oligomers, and enzymatic hydrolysis of these glycolyzed products using Bacillus subtilis esterase (Bs2Est). Bs2Est efficiently hydrolyzed glycolyzed products into TPA as a key enzyme for chemo-enzymatic depolymerization.
View Article and Find Full Text PDFGiven that lipase is an enzyme applicable in various industrial fields and water-miscible organic solvents are important reaction media for developing industrial-scale biocatalysis, a structure-based strategy was explored to stabilize lipase A from Bacillus subtilis in a water-ethanol cosolvent. Site-directed mutagenesis of ethanol-interacting sites resulted in 4 mutants, i.e.
View Article and Find Full Text PDF