Objectives: In recent years, periodontitis, and dental caries have become common in humans and need to be diagnosed in the early stage to prevent severe complications and tooth loss. These dental issues are diagnosed by visual inspection, measuring pocket probing depth, and radiographs findings from experienced dentists. Though a glut of machine learning (ML) algorithms has been proposed for the automated detection of periodontitis, and dental caries, determining which ML techniques are suitable for clinical practice remains under debate.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
February 2023
Objective: Molecular subtyping is an important procedure for prognosis and targeted therapy of breast carcinoma, the most common type of malignancy affecting women. Immunohistochemistry (IHC) analysis is the widely accepted method for molecular subtyping. It involves the assessment of the four molecular biomarkers namely estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and antigen Ki67 using appropriate antibody reagents.
View Article and Find Full Text PDFBackground And Objective: Medical image classification problems are frequently constrained by the availability of datasets. "Data augmentation" has come as a data enhancement and data enrichment solution to the challenge of limited data. Traditionally data augmentation techniques are based on linear and label preserving transformations; however, recent works have demonstrated that even non-linear, non-label preserving techniques can be unexpectedly effective.
View Article and Find Full Text PDFCentral serous chorioretinopathy (CSCR) is a chorioretinal disorder of the eye characterized by serous detachment of the neurosensory retina at the posterior pole of the eye. CSCR results from the accumulation of subretinal fluid (SRF) due to idiopathic defects at the level of the retinal pigment epithelial (RPE) that allows serous fluid from the choriocapillaris to diffuse into the subretinal space between RPE and neurosensory retinal layers. This condition is presently investigated by clinicians using invasive angiography or non-invasive optical coherence tomography (OCT) imaging.
View Article and Find Full Text PDFIn this work, we have focused on the segmentation of Focal Cortical Dysplasia (FCD) regions from MRI images. FCD is a congenital malformation of brain development that is considered as the most common causative of intractable epilepsy in adults and children. To our knowledge, the latest work concerning the automatic segmentation of FCD was proposed using a fully convolutional neural network (FCN) model based on UNet.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Intra-retinal cysts (IRCs) are significant in detecting several ocular and retinal pathologies. Segmentation and quantification of IRCs from optical coherence tomography (OCT) scans is a challenging task due to present of speckle noise and scan intensity variations across the vendors. This work proposes a convolutional neural network (CNN) model with an encoder-decoder pair architecture for IRC segmentation across different cross-vendor OCT scans.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Development of an automated sub-retinal fluid segmentation technique from optical coherence tomography (OCT) scans is faced with challenges such as noise and motion artifacts present in OCT images, variation in size, shape and location of fluid pockets within the retina. The ability of a fully convolutional neural network to automatically learn significant low level features to differentiate subtle spatial variations makes it suitable for retinal fluid segmentation task. Hence, a fully convolutional neural network has been proposed in this work for the automatic segmentation of sub-retinal fluid in OCT scans of central serous chorioretinopathy (CSC) pathology.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2019
Separation of the vascular tree into arteries and veins is a fundamental prerequisite in the automatic diagnosis of retinal biomarkers associated with systemic and neurodegenerative diseases. In this paper, we present a novel graph search metaheuristic approach for automatic separation of arteries/veins (A/V) from color fundus images. Our method exploits local information to disentangle the complex vascular tree into multiple subtrees, and global information to label these vessel subtrees into arteries and veins.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2018
Background And Objective: Accurate, reliable, efficient, and precise measurements of the lumen geometry of the common carotid artery (CCA) are important for (a) managing the progression/regression of atherosclerotic build-up and (b) the risk of stroke. The image-based degree of stenosis in the carotid artery and the plaque burden can be predicted using the automated carotid lumen diameter (LD)/inter-adventitial diameter (IAD) measurements from B-mode ultrasound images. The objective of this review is to present the state-of-the-art methods and systems for the measurement of LD/IAD in CCA based on automated or semi-automated strategies.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is an imaging modality that is used extensively for ophthalmic diagnosis, near-histological visualization, and quantification of retinal abnormalities such as cysts, exudates, retinal layer disorganization, etc. Intra-retinal cysts (IRCs) occur in several macular disorders such as, diabetic macular edema, retinal vascular disorders, age-related macular degeneration, and inflammatory disorders. Automated segmentation of IRCs poses challenges owing to variations in the acquisition system scan intensities, speckle noise, and imaging artifacts.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2018
Retinal vessel segmentation is a key step towards the accurate visualization, diagnosis, early treatment and surgery planning of ocular diseases. For the last two decades, a tremendous amount of research has been dedicated in developing automated methods for segmentation of blood vessels from retinal fundus images. Despite the fact, segmentation of retinal vessels still remains a challenging task due to the presence of abnormalities, varying size and shape of the vessels, non-uniform illumination and anatomical variability between subjects.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Optical Coherence Tomography (OCT) has emerged as a major diagnostic modality for retinal imaging. Although OCT generates gross volumetric data, manual analysis of the images for locating or quantifying retinal cysts is a time consuming process. Recently semi- and fully-automatic methods for locating and segmenting retinal cysts have been proposed in the literature.
View Article and Find Full Text PDFMonitoring of cerebrovascular diseases via carotid ultrasound has started to become a routine. The measurement of image-based lumen diameter (LD) or inter-adventitial diameter (IAD) is a promising approach for quantification of the degree of stenosis. The manual measurements of LD/IAD are not reliable, subjective and slow.
View Article and Find Full Text PDFThe degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge.
View Article and Find Full Text PDFOptical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data.
View Article and Find Full Text PDFPurpose: To compare the strength of correlation between automatically measured carotid lumen diameter (LD) and interadventitial diameter (IAD) with plaque score (PS).
Methods: Retrospective study on a database of 404 common carotid artery B-mode sonographic images from 202 diabetic patients. LD and IAD were computed automatically using an advanced computerized edge detection method and compared with two distinct manual measurements.
Tuberculosis (TB) is an infectious disease caused by the bacteria Mycobacterium tuberculosis. It primarily affects the lungs, but it can also affect other parts of the body. TB remains one of the leading causes of death in developing countries, and its recent resurgences in both developed and developing countries warrant global attention.
View Article and Find Full Text PDFCardiovascular diseases (including stroke and heart attack) are identified as the leading cause of death in today's world. However, very little is understood about the arterial mechanics of plaque buildup, arterial fibrous cap rupture, and the role of abnormalities of the vasa vasorum. Recently, ultrasonic echogenicity characteristics and morphological characterization of carotid plaque types have been shown to have clinical utility in classification of stroke risks.
View Article and Find Full Text PDFDuring the last decade, many approaches have been proposed for improving the estimation of diffusion measures. These techniques have already shown an increase in accuracy based on theoretical considerations, such as incorporating prior knowledge of the data distribution. The increased accuracy of diffusion metric estimators is typically observed in well-defined simulations, where the assumptions regarding properties of the data distribution are known to be valid.
View Article and Find Full Text PDFEffective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution.
View Article and Find Full Text PDFImage interpolation is intrinsically a severely under-determined inverse problem. Traditional non-adaptive interpolation methods do not account for local image statistics around the edges of image structures. In practice, this results in artifacts such as jagged edges, blurring and/or edge halos.
View Article and Find Full Text PDFIn this paper, we propose a method to denoise magnitude magnetic resonance (MR) images, which are Rician distributed. Conventionally, maximum likelihood methods incorporate the Rice distribution to estimate the true, underlying signal from a local neighborhood within which the signal is assumed to be constant. However, if this assumption is not met, such filtering will lead to blurred edges and loss of fine structures.
View Article and Find Full Text PDFIn this note, we address the estimation of the noise level in magnitude magnetic resonance (MR) images in the absence of background data. Most of the methods proposed earlier exploit the Rayleigh distributed background region in MR images to estimate the noise level. These methods, however, cannot be used for images where no background information is available.
View Article and Find Full Text PDFPurpose: To study, from a machine learning perspective, the performance of several machine learning classifiers that use texture analysis features extracted from soft-tissue tumors in nonenhanced T1-MRI images to discriminate between malignant and benign tumors.
Materials And Methods: Texture analysis features were extracted from the tumor regions from T1-MRI images of clinically proven cases of 49 malignant and 86 benign soft-tissue tumors. Three conventional machine learning classifiers were trained and tested.