Publications by authors named "Jenssen H"

Objectives: Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the clinical adoption of TTV as an imaging biomarker. This study aimed to develop and externally evaluate a CRLM auto-segmentation model on CT scans, to facilitate the clinical adoption of TTV.

View Article and Find Full Text PDF

Aim: Previous studies have demonstrated that contact lenses coated with the antimicrobial cationic peptide Mel4, a derivative of melimine, can reduce the occurrence of keratitis. However, the antimicrobial activity of Mel4 weakened over time due to its susceptibility to proteolytic degradation. Oligo-N-substituted glycine peptoids such as TM5 and TM18 possess antimicrobial properties and are resistant to proteolytic breakdown.

View Article and Find Full Text PDF

Background: Most patients with cervical radiculopathy improve within the first months without treatment or with non-surgical treatment. A systematic review concluded that these patients improve, regardless of their intervention. Still, many patients are offered surgery, despite limited evidence regarding the indications for surgical treatments.

View Article and Find Full Text PDF

Objective: Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.

Methods: We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates.

View Article and Find Full Text PDF

To combat the ever-growing increase of multidrug-resistant (MDR) bacteria, action must be taken in the development of antibiotic formulations. Colistin, an effective antibiotic, was found to be nephrotoxic and neurotoxic, consequently leading to a ban on its use in the 1980s. A decade later, colistin use was revived and nowadays used as a last-resort treatment against Gram-negative bacterial infections, although highly regulated.

View Article and Find Full Text PDF

Self-assembled hyaluronic acid-based nanogels are versatile drug carriers due to their biodegradable nature and gentle preparation conditions, making them particularly interesting for delivery of peptide therapeutics. This study aims to elucidate the relation between peptide structure and encapsulation in a nanogel. Key peptide properties that affect encapsulation in octenyl succinic anhydride-modified hyaluronic acid nanogels were identified as we explored the effect on nanogel characteristics using 12 peptides with varying charge and hydrophobicity.

View Article and Find Full Text PDF

Background: Ocular infections caused by antibiotic-resistant pathogens can result in partial or complete vision loss. The development of pan-resistant microbial strains poses a significant challenge for clinicians as there are limited antimicrobial options available. Synthetic peptoids, which are sequence-specific oligo-N-substituted glycines, offer potential as alternative antimicrobial agents to target multidrug-resistant bacteria.

View Article and Find Full Text PDF

Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits.

View Article and Find Full Text PDF

The introduction of direct-acting antiviral (DAA) treatment of hepatitis C virus (HCV) infected patients has greatly increased treatment success rates. However, viral response kinetics to DAA treatment may depend on pre-existing resistance-associated substitutions (RASs) in HCV. The aim of this study was to describe how pre-existing RASs affect DAA treatment-induced reduction in HCV RNA titers in HCV genotypes 1- and 3-infected individuals.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising therapeutics in the fight against multidrug-resistant bacteria. As a mimic of AMPs, peptoids with N-substituted glycine backbone have been utilized for antimicrobials with resistance against proteolytic degradation. Antimicrobial peptoids are known to kill bacteria by membrane disruption; however, the nonspecific aggregation of intracellular contents is also suggested as an important bactericidal mechanism.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is among the most neglected tropical diseases in the world. Drug cell permeability is essential for killing the intracellular residing parasites responsible for VL, making cell-permeating peptides a logical choice to address VL. Unfortunately, the limited biological stability of peptides restricts their usage.

View Article and Find Full Text PDF

Although persister cells are the root cause of resistance development and relapse of chronic infections, more attention has been focused on developing antimicrobial agents against resistant bacterial strains than on developing anti-persister agents. Frustratingly, the global preclinical antibacterial pipeline does not include any anti-persister drug. Therefore, the central point of this work is to explore antimicrobial peptidomimetics called peptoids (sequence-specific oligo--substituted glycines) as a new class of anti-persister drugs.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising pharmaceutical candidates for the prevention and treatment of infections caused by multidrug-resistant pathogens, which are responsible for the majority of hospital-acquired infections. Clinical translation of AMPs has been limited, in part by apparent toxicity on systemic dosing and by instability arising from susceptibility to proteolysis. Peptoids (sequence-specific oligo--substituted glycines) resist proteolytic digestion and thus are of value as AMP mimics.

View Article and Find Full Text PDF
Article Synopsis
  • Manual evaluation of bone marrow signals is time-consuming and requires strict standardization for accuracy.
  • The study aimed to explore the use of deep learning to automate the segmentation of bone marrow signals in young individuals using knee MRI images from a multi-centered study.
  • Results indicated that the deep-learning model performed well for lower intensity signals but struggled with higher intensity signals, suggesting the need for more extensive training datasets and cross-institutional validation to enhance accuracy.
View Article and Find Full Text PDF

The mechanism of action of antimicrobial peptides (AMPs) has been debated over many years, and various models have been proposed. In this work we combine small angle X-ray/neutron scattering (SAXS/SANS) techniques to systematically study the effect of AMPs on the cytoplasmic membrane of bacteria using a simplified model system of 4 : 1 DMPE : DMPG ([1,2-dimyristoyl--3-phosphoethanolamine] : [1,2-dimyristoyl--3-phospho-(10--glycerol)]) phospholipid unilamellar vesicles. The studied antimicrobial peptides aurein 1.

View Article and Find Full Text PDF

Cutaneous wound healing is a vital biological process that aids skin regeneration upon injury. Wound healing failure results from persistent inflammatory conditions observed in diabetes, or autoimmune diseases like psoriasis. Chronic wounds are incurable due to factors like poor oxygenation, aberrant function of peripheral sensory nervature, inadequate nutrients and blood tissue supply.

View Article and Find Full Text PDF

With a relatively large surface area (2 m) and 15% of total body mass, the skin forms the largest organ of the human body. The main functions of the skin include regulation of body temperature by insulation or sweating, regulation of the nervous system, regulation of water content, and protection against external injury. To perform these critical functions, the skin encodes genes for transporters responsible for the cellular trafficking of essential nutrients and metabolites to maintain cellular hemostasis.

View Article and Find Full Text PDF

Previous studies of associations of forced expiratory lung volume in one second (FEV1) with peak oxygen uptake (VO2peak) in chronic obstructive pulmonary disease (COPD) have not taken sex, age and height related variance of dynamic lung volumes into account. Nor have such demographic spread of spirometric measures been considered in studies comparing VO2peak between COPD phenotypes characterized by degree of emphysema. We aimed to assess the association of FEV1Z-score with VO2peak in COPD (n = 186) and investigate whether this association differs between emphysema (E-COPD) and non-emphysema (NE-COPD) phenotypes.

View Article and Find Full Text PDF

Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with , , and models. Cell migration and proliferation were tested on keratinocytes and on porcine ears.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an environmental pathogen that can cause severe infections in immunocompromised patients. P. aeruginosa infections are typically treated with multiple antibiotics including tobramycin, ciprofloxacin, and meropenem.

View Article and Find Full Text PDF

Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifying COVID-19 abnormalities in these CT images is invaluable to clinicians. The hallmark of COVID-19 in chest CT images is the presence of ground-glass opacities in the lung region, which are tedious to segment manually.

View Article and Find Full Text PDF

Hypothesis: Most textbook models for antimicrobial peptides (AMP) mode of action are focused on structural effects and pore formation in lipid membranes, while these deformations have been shown to require high concentrations of peptide bound to the membrane. Even insertion of low amounts of peptides in the membrane is hypothesized to affect the transmembrane transport of lipids, which may play a key role in the peptide effect on membranes.

Experiments: Here we combine state-of-the-art small angle X-ray/neutron scattering (SAXS/SANS) techniques to systematically study the effect of a broad selection of natural AMPs on lipid membranes.

View Article and Find Full Text PDF

Antimicrobial peptides have attracted considerable interest as potential new class of antibiotics against multi-drug resistant bacteria. However, their therapeutic potential is limited, in part due to susceptibility towards enzymatic degradation and low bioavailability. Peptoids (oligomers of N-substituted glycines) demonstrate proteolytic stability and better bioavailability than corresponding peptides while in many cases retaining antibacterial activity.

View Article and Find Full Text PDF

For many years, we have tried to use antibiotics to eliminate the persistence of pathogenic bacteria. However, these infectious agents can recover from antibiotic challenges through various mechanisms, including drug resistance and antibiotic tolerance, and continue to pose a global threat to human health. To design more efficient treatments against bacterial infections, detailed knowledge about the bacterial response to the commonly used antibiotics is required.

View Article and Find Full Text PDF