Metasurfaces have recently opened up applications in the quantum regime, including quantum tomography and the generation of quantum entangled states. With their capability to store a vast amount of information by utilizing the various geometric degrees of freedom of nanostructures, metasurfaces are expected to be useful for processing quantum information. Here, we propose and experimentally demonstrate a programmable metasurface capable of performing quantum algorithms using both classical and quantum light with single photons.
View Article and Find Full Text PDFField transformation, as an extension of the transformation optics, provides a unique means for nonreciprocal wave manipulation, while the experimental realization remains a substantial challenge as it requires stringent material parameters of the metamaterials, e.g., purely nonreciprocal bianisotropic parameters.
View Article and Find Full Text PDFNon-Abelian phenomena arise when the sequence of operations on physical systems influences their behaviors. By possessing internal degrees of freedom such as polarization, light and sound can be subjected to various manipulations, including constituent materials, structured environments, and tailored source conditions. These manipulations enable the creation of a great variety of Hamiltonians, through which rich non-Abelian phenomena can be explored and observed.
View Article and Find Full Text PDFWe propose a concept called acoustic amplifying diode combining signal isolation and amplification in a single device. The signal is exponentially amplified in one incident direction with no reflection and is perfectly absorbed in another. The reflection is eliminated from the device in both directions with impedance matching, preventing backscattering to the signal source.
View Article and Find Full Text PDFThe discovery of non-Hermitian skin effect (NHSE) has opened an exciting direction for unveiling unusual physics and phenomena in non-Hermitian system. Despite notable theoretical breakthroughs, actual observation of NHSE's whole evolvement, however, relies mainly on gain medium to provide amplified mode. It typically impedes the development of simple, robust system.
View Article and Find Full Text PDFTwo-photon interference is an important effect that is tightly related to the quantum nature of light. Recently, it has been shown that the photon bunching from the Hong-Ou-Mandel (HOM) effect can be used for quantum imaging in which sample properties (reflection/transmission amplitude, phase delay, or polarization) can be characterized at the pixel-by-pixel level. In this work, we perform Jones matrix imaging for an unknown object based on two-photon interference.
View Article and Find Full Text PDFMetasurfaces provide a promising route for structuring light and generating holograms with designed amplitude, phase, and polarization profiles, leading to a versatile platform for integrating and constructing optical components beyond the conventional ones. At the same time, incorporating coincidence in imaging allows a high signal-to-noise ratio for imaging in very low light levels. As beneficial from the recent development in both metasurfaces and single-photon avalanche diode (SPAD) cameras, we combine the polarization-sensitive capability of metasurfaces with Hong-Ou-Mandel (HOM)-type interference in generating images with tailor-made two-photon interference and polarization coincidence signatures.
View Article and Find Full Text PDFWe investigate the scattering properties of coupled parity-time (PT) symmetric chiral nanospheres with scattering matrix formalism. The exceptional points, i.e.
View Article and Find Full Text PDFMetasurfaces with ultrathin artificial structures have attracted much attention because of their unprecedented capability in light manipulations. The recent development of metasurfaces with controllable responses opens up new opportunities in various applications. Moreover, metasurfaces composed of twisted chiral structures can generate asymmetric responses for opposite incidence, leading to more degrees of freedom in wave detections and controls.
View Article and Find Full Text PDFSpin-orbit interactions (SOIs) endow light with intriguing properties and applications such as photonic spin-Hall effects and spin-dependent vortex generations. However, it is counterintuitive that SOIs can exist for sound, which is a longitudinal wave that carries no intrinsic spin. Here, we theoretically and experimentally demonstrate that airborne sound can possess artificial transversality in an acoustic micropolar metamaterial and thus carry both spin and orbital angular momentum.
View Article and Find Full Text PDFExceptional points (EPs) have been shown to be useful in bringing about sensitive optical properties based on non-Hermitian physics. For example, they have been applied in plasmonics to realize nano-sensing with extreme sensitivity. While the exceptional points are conventionally constructed by considering parity-time symmetric or anti-parity-time symmetric media, we theoretically demonstrate the possibility of generating a series of non-Hermitian systems by transforming a seed system with conventional parity-time symmetry within the transformation optics framework.
View Article and Find Full Text PDFRecently, higher-order topologies have been experimentally realized, featuring topological corner modes (TCMs) between adjacent topologically distinct domains. However, they have to comply with specific spatial symmetries of underlying lattices, hence their TCMs only emerge in very limited geometries, which significantly impedes generic applications. Here, we report a general scheme of inducing TCMs in arbitrary geometry based on Dirac vortices from aperiodic Kekulé modulations.
View Article and Find Full Text PDFIn this work, we propose a non-Hermitian effective medium theory to interpret the spawning rings of exceptional points out of the Dirac cones in the band structures of photonic crystals with loss/gain. Based on this theory, we predict and demonstrate two unique types of band dispersions of fully passive photonic crystals. In one type, the exceptional ring shrinks into a complex Dirac point associated with a complex Dirac-like cone.
View Article and Find Full Text PDFLight Sci Appl
April 2021
The Brewster's law predicts zero reflection of p-polarization on a dielectric surface at a particular angle. However, when loss is introduced into the permittivity of the dielectric, the Brewster condition breaks down and reflection unavoidably appears. In this work, we found an exception to this long-standing dilemma by creating a class of nonmagnetic anisotropic metamaterials, where anomalous Brewster effects with independently tunable absorption and refraction emerge.
View Article and Find Full Text PDFQubit operation belonging to unitary transformation is the fundamental operation to realize quantum computing and information processing. Here, we show that the complex and flexible light-matter interaction between dielectric metasurfaces and incident light can be used to perform arbitrary U(2) operations. By incorporating both coherent spatial-mode operation together with two polarizations on a single metasurface, we further extend the discussion to single-photon two-qubit U(4) operations.
View Article and Find Full Text PDFCircular phase-dichroism (CPD) has been suggested for the characterization of chiral metasurfaces in supplementing the conventional circular dichroism (CD). Conventional CD probes the bulk properties while the CPD, reported recently in 2D chiral metasurfaces using an air-gap Fabry-Perot setup, is based on the surface properties. Here we propose and demonstrate a robust birefringent interference approach to obtain the CPD by replacing the air-gap with a uniaxial birefringent material in which interference is realized by the difference in the refractive indexes for the ordinary and extraordinary components of the material.
View Article and Find Full Text PDFAn exceptional point occurring in a tailor-made lossy optical system has been recently found to alter optical properties in counter-intuitive ways. In the context of tunable plasmonic devices, exceptional points can be useful as a driving mechanism to enhance tunability. Here, we experimentally demonstrate how a plasmonic exceptional point can be incorporated in metasurface Q-plates to have the generated vortex beam tuned through a change of structural parameter.
View Article and Find Full Text PDFBy designing tailor-made resonance modes with structured atoms, metamaterials allow us to obtain constitutive parameters outside their limited range from natural materials. Nonetheless, tuning the constitutive parameters depends on our ability to modify the physical structure or external circuits attached to the metamaterials, posing a fundamental challenge to the range of tunability in many real-time applications. Here, we propose the concept of virtualized metamaterials on their signal response function to escape the boundary inherent in the physical structure of metamaterials.
View Article and Find Full Text PDFNon-Hermitian optical systems with parity-time (PT) symmetry have recently revealed many intriguing prospects that outperform conservative structures. The previous works are mostly rooted in complex arrangements with controlled gain-loss interplay. Here, we demonstrate anti-PT symmetry inherent in the nonlinear optical interaction based upon forward optical four-wave mixing in a laser-cooled atomic ensemble with negligible linear gain and loss.
View Article and Find Full Text PDFThe concept of gauge field is a cornerstone of modern physics and the synthetic gauge field has emerged as a new way to manipulate particles in many disciplines. In optics, several schemes of Abelian synthetic gauge fields have been proposed. Here, we introduce a new platform for realizing synthetic SU(2) non-Abelian gauge fields acting on two-dimensional optical waves in a wide class of anisotropic materials and discover novel phenomena.
View Article and Find Full Text PDFThree-dimensional (3D) Dirac points inheriting relativistic effects from high-energy physics appear as gapless excitations in the topological band theory. Hosting fourfold linear dispersion, they play the central role among various topological phases, such as representing the degeneracy of paired Weyl nodes carrying opposite chiralities. While they have been extensively investigated in solid state systems for electrons, 3D Dirac points have not yet been observed in any classical systems.
View Article and Find Full Text PDFTransformation optics (TO) can be used to investigate nontrivial spacetime structures with inhomogeneous materials. However, the extreme curvature and large refractive indices make the implementation of a wormhole challenging. By considering flexural waves on a curved plate with geometric curvature, the stringent material requirement can be relaxed, and we demonstrate a two-dimensional analog of a wormhole using homogeneous materials within a curved laboratory frame.
View Article and Find Full Text PDFPhotonic crystals have become a very common and powerful concept in optics since its introduction in the 1980s by Eli Yablonovitch and Sajeev John. It is in fact a concept borrowed from condensed matter physics. The discussion of photonic bands and bandgaps allows us to manipulate light on an optical chip, along a photonic crystal fiber and even in the quantum optics regime.
View Article and Find Full Text PDFGeneral relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times.
View Article and Find Full Text PDFInspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form invariance in usual transformation methods. We demonstrate compact and simple-to-implement metasurfaces for shifting, transforming, and splitting a point source.
View Article and Find Full Text PDF