Nanoparticles (NPs) that are forcefully driven through a brush-decorated nanochannel form a nonequilibrium system with a rich physical behavior, including a dynamical phase transition between two modes of propagation that correspond to either separate clusters of NPs or a continuous flow channel. The peculiar properties of this system make it an ideal benchmark candidate for a comparison of three thermostat settings, the dissipative particle dynamics (DPD), the Langevin (LGV) dynamics, and a modified LGV setup, denoted as LGV^{-}, in which the thermostatting is disabled in the direction of the driving force. We demonstrate that the choice of the thermostat has little influence on the conformations of NPs, and that, due to differences in the dissipation modes, notable differences arise in their dynamical properties, such as effective friction constants and average velocities.
View Article and Find Full Text PDFPolymerlike structures are ubiquitous in nature and synthetic materials. Their configurational and migration properties are often affected by crowded environments leading to nonthermal fluctuations. Here, we study an ideal Rouse chain in contact with a nonhomogeneous active bath, characterized by the presence of active self-propelled agents which exert time-correlated forces on the chain.
View Article and Find Full Text PDFA fundamental question about biomolecular condensates is how distinct condensates can emerge from the interplay of different components. Here we present a minimal model of droplet differentiation where phase separated droplets demix into two types with different chemical modifications triggered by enzymatic reactions. We use numerical solutions to Cahn-Hilliard equations with chemical reactions and an effective droplet model to reveal the switchlike behavior.
View Article and Find Full Text PDFThe force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations.
View Article and Find Full Text PDFThe solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures.
View Article and Find Full Text PDFControl of adhesion is a striking feature of living matter that is of particular interest regarding technological translation. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol.
View Article and Find Full Text PDFA model describing the binding of biological signaling proteins to highly charged polymer networks is presented. The networks are formed by polyelectrolyte chains for which the distance between two charges at the chain is smaller than the Bjerrum length. Counterion condensation on such highly charged chains immobilizes a part of the counterions.
View Article and Find Full Text PDFThe Bond Fluctuation Model (BFM) is a highly efficient and versatile method for simulating polymers, membranes, and soft matter. Due to its coarse-grained nature, the BFM is employed to understand the universal properties of polymers. Solvent effects are often mediated by explicit solvent particles, while implicit solvent models have had limited use as they may lead to frozen states and, thus, ergodicity-related problems.
View Article and Find Full Text PDFPolymer brushes, i.e., end-tethered polymer chains on substrates, are sensitive to adaptation, e.
View Article and Find Full Text PDFWhile the dynamics of dimers and polymer chains in a viscous solvent is well understood within the celebrated Rouse model, the effect of an external magnetic field on the dynamics of a charged chain is much less understood. Here, we generalize the Rouse model for a charged dimer to include the effect of an external magnetic field. Our analytically solvable model allows a fundamental insight into the magneto-generated dynamics of the dimer in the overdamped limit as induced by the Lorentz force.
View Article and Find Full Text PDFWhile the behavior of active colloidal molecules is well studied now for constant activity, the effect of activity gradients is much less understood. Here, we explore one of the simplest molecules in activity gradients, namely active chiral dimers composed of two particles with opposite active torques of the same magnitude. We show analytically that with increasing torque, the dimer switches its behavior from antichemotactic to chemotactic.
View Article and Find Full Text PDFWe consider polymer brushes in poor solvent that are grafted onto planar substrates and onto the internal and external surfaces of a cylinder using molecular dynamics simulation, self-consistent field (SCF), and mean-field theory. We derive a unified expression for the mean field free energy for the three geometrical classes. While for low grafting densities, the effect of chain elasticity can be neglected in poor solvent conditions, it becomes relevant at higher grafting densities and, in particular, for concave geometries.
View Article and Find Full Text PDFIt is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements, collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect, the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect.
View Article and Find Full Text PDFWe consider a rigid assembly of two active Brownian particles, forming an active colloidal dimer, in a gradient of activity. We show analytically that depending on the relative orientation of the two particles the active dimer accumulates in regions of either high or low activity, corresponding to, respectively, chemotaxis and antichemotaxis. Certain active dimers show both chemotactic and antichemotactic behavior, depending on the strength of the activity.
View Article and Find Full Text PDFWe propose a mesoscopic Brownian magneto heat pump made of a single charged Brownian particle that is steered by an external magnetic field. The particle is subjected to two thermal noises from two different heat sources. When confined, the particle performs gyrating motion around a potential energy minimum.
View Article and Find Full Text PDFIn molecular dynamics simulations we investigate the self-organized formation of droplets from a continuous flow of incoming nanoparticles. This transformation is facilitated by a cylindrical channel that is decorated with a polymer brush in a marginally poor solvent. We analyze droplet formation and propagation by means of simple scaling arguments which are tested in the simulations.
View Article and Find Full Text PDFPolymer brushes, consisting of densely end-tethered polymers to a surface, can exhibit rapid and sharp conformational transitions due to specific stimuli, which offer intriguing possibilities for surface-based sensing of the stimuli. The key toward unlocking these possibilities is the development of methods to readily transduce signals from polymer conformational changes. Herein, we report on single-fluorophore integrated ultrathin (<40 nm) polymer brush surfaces that exhibit changing fluorescence properties based on polymer conformation.
View Article and Find Full Text PDFPolymers (Basel)
June 2021
We simulated the crystallization and melting behavior of entangled polymer melts using molecular dynamics where each chain is subject to a force dipole acting on its ends. This mimics the deformation of chains in a flow field but represents a well-defined equilibrium system in the melt state. Under weak extension within the linear response of the chains, the mechanical work done on the system is about two orders of magnitude smaller as compared with the heat of fusion.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2021
Densely packed polymer chains grafted to a substrate, especially polymer brushes, have been studied intensively. Of special interest are systems that react to changes in external conditions or"remember" previous conditions. With this focus, we explore the properties of PNiPAAm brushes and relate published work to own results.
View Article and Find Full Text PDFActive particles with their characteristic feature of self-propulsion are regarded as the simplest models for motility in living systems. The accumulation of active particles in low activity regions has led to the general belief that chemotaxis requires additional features and at least a minimal ability to process information and to control motion. We show that self-propelled particles display chemotaxis and move into regions of higher activity if the particles perform work on passive objects, or cargo, to which they are bound.
View Article and Find Full Text PDFPolymer brush surfaces that alter their physical properties in response to chemical stimuli have the capacity to be used as new surface-based sensing materials. For such surfaces, detecting the polymer conformation is key to their sensing capabilities. Herein, we report on FRET-integrated ultrathin (<70 nm) polymer brush surfaces that exhibit stimuli-dependent FRET with changing brush conformation.
View Article and Find Full Text PDFIn this paper, we elucidate a generic mechanism behind strain-induced phase transition in aqueous solutions of silk-inspired biomimetics by atomistic molecular dynamics simulations. We show the results of modeling of homopeptides polyglycine Gly and polyalanine Ala and a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser), i.e.
View Article and Find Full Text PDFRecently, we have shown that a tensile stress applied to chains of poly(ethylene oxide) (PEO) in water reduces the solubility and leads to phase separation of PEO chains from water with the formation of a two-phase region. In this work, we further elucidate the generic mechanism behind strain-induced phase transitions in aqueous PEO solutions with concentrations of 50-60 wt % by performing all-atom molecular dynamics simulations. In particular, we study the stability of oriented PEO fibers after removing stretching forces.
View Article and Find Full Text PDFStructural forces within aqueous water at a solid interface can significantly change surface reactivity and the affinity of solutes toward it. We show using molecular dynamics simulations how hydrophilic and hydrophobic quartz surfaces perturb the orientational structure of aqueous water, ultimately strengthening dipolar forces between molecules in proximity to the interface. When derived as a function of distance from each surface, it was found that both surfaces indirectly enhance the long-range dipolar attraction of water for itself toward the interfacial region.
View Article and Find Full Text PDF