Eur J Pharm Biopharm
September 2019
Hot-Melt-Extrusion on Twin-Screw-Extruders has been established as a standard processing technique for pharmaceutical products. A major challenge is the transfer from a lab to a production level, since the combination of several unit operations within one apparatus leads to complex conditions for such a continuous manufacturing process. Here the residence time distribution is a crucial measure, which reflects the different mechanisms, e.
View Article and Find Full Text PDFOver recent years Twin-Screw-Extrusion (TSE) has been established as a platform technology for pharmaceutical manufacturing. Compared to other continuous operation, one of the major benefits of this method is the combination of several unit operations within one apparatus. Several of these are linked to the Residence Time Distribution (RTD), which is typically expressed by the residence time density function.
View Article and Find Full Text PDFIn the framework of Quality-by-Design (QbD), the inline determination of process parameters or quality attributes of a product using sufficient process analytical technology (PAT) is a center piece for the establishment of continuous processes as a standard pharmaceutical technology. In this context, Twin-Screw-Extrusion (TSE) processes, such as Hot-Melt-Extrusion (HME), are one key aspect of current research. The main benefit of this process technology is the combination of different unit operations.
View Article and Find Full Text PDFHot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier.
View Article and Find Full Text PDF