Publications by authors named "Jens Weise"

Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c).

View Article and Find Full Text PDF

Novel therapeutic concepts against cerebral ischemia focus on cell-based therapies in order to overcome some of the side effects of thrombolytic therapy. However, cell-based therapies are hampered because of restricted understanding regarding optimal cell transplantation routes and due to low survival rates of grafted cells. We therefore transplanted adult green fluorescence protein positive neural precursor cells (NPCs) either intravenously (systemic) or intrastriatally (intracerebrally) 6 hours after stroke in mice.

View Article and Find Full Text PDF

Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested.

View Article and Find Full Text PDF

Neural precursor cells (NPC) are an interesting tool in experimental stroke research, but their therapeutic potential is limited due to poor long-term survival. We therefore in vitro transduced subventricular zone-(SVZ)-derived NPC with the anti-apoptotic fusion protein TAT-Bcl-x(L) and analyzed NPC survival, differentiation, and post-stroke functional deficits after experimental ischemia in mice. Survival of TAT-Bcl-x(L)-transduced NPC, which were injected at day 7 post-stroke into the ischemic striatum, was significantly increased at 4 weeks after stroke.

View Article and Find Full Text PDF

Endogenous neurogenesis persists in the subgranular zone (SGZ) of the adult rodent brain. Cerebral ischemia stimulates endogenous neurogenesis involving proliferation, migration and differentiation of SGZ-derived neural precursor cells (NPC). However, the biological meaning of this phenomenon is limited by poor survival of NPC.

View Article and Find Full Text PDF

Cerebral ischemia stimulates endogenous neurogenesis within the subventricular zone and the hippocampal dentate gyrus of the adult rodent brain. However, such newly generated cells soon die after cerebral ischemia. To enhance postischemic survival of neural precursor cells (NPC) and long-lasting neural regeneration, we applied the antiapoptotic chaperone heat shock protein 70 (Hsp70) fused to a cell-penetrating peptide derived from the HIV TAT to ensure delivery across the blood-brain barrier and the cell membrane.

View Article and Find Full Text PDF

Cerebral ischemia activates endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus. Consecutively, SVZ-derived neural precursors migrate towards ischemic lesions. However, functional relevance of activated neurogenesis is limited by poor survival of new-born precursors.

View Article and Find Full Text PDF

Background And Purpose: Systemic injection of hematopoietic stem cells after ischemic cardiac or neural lesions is one approach to promote tissue repair. However, mechanisms of possible protective or reparative effects are poorly understood. In this study we analyzed the effect of lineage-negative bone marrow-derived hematopoietic stem and precursor cells (Lin(-)-HSCs) on ischemic brain injury in mice.

View Article and Find Full Text PDF

Purpose: The physiological function of the cellular prion protein (PrPC) is still unclear. A growing body of evidence suggests that PrPC has neuroprotective properties and that its deletion increases susceptibility to focal cerebral ischemia. The purpose of this study was to elucidate the role of PrPC overexpression in ischemic brain injury in vivo.

View Article and Find Full Text PDF

Recombinant tissue plasminogen activator (rt-PA) treatment improves functional outcome after acute ischemic stroke, inducing reperfusion by its thrombolytic activity. Conversely, there is evidence that rt-PA can mediate neuronal damage after ischemic brain injury in vivo. In addition to other mechanisms, enhancement of N-methyl-D-aspartate (NMDA) receptor signalling has been proposed to underlie rt-PA-mediated neurotoxicity.

View Article and Find Full Text PDF

Background And Purpose: The physiological function of cellular prion protein (PrPc) is not yet understood. Recent findings suggest that PrPc may have neuroprotective properties, and its absence increases susceptibility to neuronal injury. The purpose of this study was to elucidate the role of PrPc in ischemic brain injury in vivo.

View Article and Find Full Text PDF

Pilocarpine-induced status epilepticus (PCSE) is a widely used model to study neurodegeneration in limbic structures after prolonged epileptic seizures. However, mechanisms mediating neuronal cell death in this model require further characterization. Examining the expression time course and spatial distribution of activated caspase-3, we sought to determine the role of apoptosis in PCSE-mediated neuronal cell death.

View Article and Find Full Text PDF

The pathological isoform of the prion protein (PrP(Sc)) has been identified to mediate transmissible spongiform encephalopathies like Creutzfeldt-Jakob disease (CJD). In contrast, the physiological function of the normal cellular prion protein (PrP(c)) is not yet understood. Recent findings suggest that PrP(c) may have neuroprotective properties and that its absence increases susceptibility to oxidative stress and neuronal injury.

View Article and Find Full Text PDF

Carotid endarterectomy (CEA) has been shown to be effective in stroke prevention in selected patients. Some studies, however, identified gender as an independent risk factor for perioperative CEA complications demonstrating an increased rate of perioperative stroke or death in women. Furthermore, contralateral internal carotid artery (ICA) occlusion has been associated with higher rates of perioperative CEA complications.

View Article and Find Full Text PDF

The establishment of retino-collicular topography is a well-investigated model of axon pathfinding and it was believed that this topography is irreversibly fixed throughout life. We now report that, after partial crush of the adult rat optic nerve, the anterograde transport of intravitreally-injected tracers via axons of surviving retinal ganglion cells (RGC) in all retinal quadrants is confined to the rostro-medial part of the superior colliculus (SC). This indicates that the retino-collicular topography is rearranged after partial crush of the adult rat optic nerve.

View Article and Find Full Text PDF

MRI including diffusion-weighted sequences (DW-MRI) has demonstrated its high sensitivity for acute supratentorial ischemic lesions. In this study we examined the sensitivity of different MRI sequences for the detection of acute brainstem and isolated thalamic infarctions. Diffusion- and T2-weighted MRI of 45 consecutive patients with signs and symptoms of infratentorial and thalamic infarction between 6/1997 and 1/2000 were analysed.

View Article and Find Full Text PDF