Publications by authors named "Jens Ulbrich"

The implementation of a dialysis method for the simultaneous purification of different polymer materials in a commercially available automated parallel synthesizer (APS) is discussed. The efficiency of this "unattended" automated parallel dialysis (APD) method was investigated by means of proton nuclear magnetic resonance (H-NMR) measurements, which confirmed that the method enables the removal of up to 99% of the unreacted monomer derived from the synthesis of the corresponding polymers in the APS. Size-exclusion chromatography (SEC) revealed that the molar mass and molar mass distribution of the investigated polymers did not undergo significant changes after the application of the APD method.

View Article and Find Full Text PDF

All-aqueous, surfactant-free, and pH-driven nanoformulation methods to generate pH- and temperature-responsive polymer nanoparticles (NPs) are described. Copolymers comprising a poly(methyl methacrylate) (PMMA) backbone with a few units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) are solubilized in acidic buffer (pH 2.0) to produce pH-sensitive NPs.

View Article and Find Full Text PDF

A series of copolymers containing 50 mol % acrylic acid (AA) and 50 mol % butyl acrylate (BA) but with differing composition profiles ranging from an AA-BA diblock copolymer to a linear gradient poly(AA-grad-BA) copolymer were synthesized and their pH-responsive self-assembly behavior was investigated. While assemblies of the AA-BA diblock copolymer were kinetically frozen, the gradient-like compositions underwent reversible changes in size and morphology in response to changes in pH. In particular, a diblock copolymer consisting of two random copolymer segments of equal length (16 mol % and 84 mol % AA content, respectively) formed spherical micelles at pH >5, a mix of spherical and wormlike micelles at pH 5 and vesicles at pH 4.

View Article and Find Full Text PDF