Previous studies reported that there is an association between abnormal body fluid balance and prognosis in colitis patients. However, it remains to be clarified the effects of colitis on characteristics of body electrolytes or water content, including alternation in blood pressure. In this study, we examined the effects of colon injury on body water balance and blood pressure in the dextran sodium sulfate (DSS)-induced colitis mouse model.
View Article and Find Full Text PDFBackground And Aims: High tissue sodium accumulation and intermuscular adipose tissue (IMAT) are associated with aging, type 2 diabetes, and chronic kidney disease. In this study, we aim to investigate whether high lower-extremity tissue sodium accumulation relates to IMAT quantity and whether systemic inflammatory mediators and adipocytokines contribute to such association.
Methods: Tissue sodium content and IMAT accumulation (percentage of IMAT area to muscle area) were measured in 83 healthy individuals using sodium imaging (Na-MRI) and proton (1H-MRI) imaging of the calf.
Physiol Genomics
July 2024
Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19).
View Article and Find Full Text PDFBackground: Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential.
Objectives: The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment.
Methods: DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks.
Introduction: Typical Western diet, rich in salt, contributes to autoimmune disease development. However, conflicting reports exist about the effect of salt on neutrophil effector functions, also in the context of arthritis.
Methods: We investigated the effect of sodium chloride (NaCl) on neutrophil viability and functions , and employing the murine K/BxN-serum transfer arthritis (STA) model.
Acute kidney injury (AKI) is a global public health concern with high mortality and morbidity. In ischemic-reperfusion injury (IRI), a main cause of AKI, the brush border membrane of S3 proximal tubules (PT) is lost to the tubular lumen. How injured tubules reconstitute lost membrane lipids during renal recovery is not known.
View Article and Find Full Text PDFBackground And Aims: High sodium intake is associated with obesity and insulin resistance, and high extracellular sodium content may induce systemic inflammation, leading to cardiovascular disease. In this study, we aim to investigate whether high tissue sodium accumulation relates with obesity-related insulin resistance and whether the pro-inflammatory effects of excess tissue sodium accumulation may contribute to such association.
Methods And Results: In a cross-sectional study of 30 obese and 53 non-obese subjects, we measured insulin sensitivity determined as glucose disposal rate (GDR) using hyperinsulinemic euglycemic clamp, and tissue sodium content using Na magnetic resonance imaging.
Objective: Patients with SLE frequently have debilitating fatigue and reduced physical activity. Intermuscular adipose tissue (IMAT) accumulation is associated with reduced physical exercise capacity. We hypothesised that IMAT is increased in patients with SLE and associated with increased fatigue, reduced physical activity and increased inflammation.
View Article and Find Full Text PDFBackground: We have previously shown that iatrogenic dehydration is associated with a shift to organic osmolyte production in the general ICU population. The aim of the present investigation was to determine the validity of the physiological response to dehydration known as aestivation and its relevance for long-term disease outcome in COVID-19.
Methods: The study includes 374 COVID-19 patients from the Pronmed cohort admitted to the ICU at Uppsala University Hospital.
New physiologic findings related to sodium homeostasis and pathophysiologic associations require a new vision for sodium, fluid and blood pressure management in dialysis-dependent chronic kidney disease patients. The traditional dry weight probing approach that has prevailed for many years must be reviewed in light of these findings and enriched by availability of new tools for monitoring and handling sodium and water imbalances. A comprehensive and integrated approach is needed to improve further cardiac health in hemodialysis (HD) patients.
View Article and Find Full Text PDFWe have recently reported that the urea osmolyte-associated water conservation system is activated in fluid loss models such as high salt-induced natriuresis, renal injury-induced impaired renal concentrating ability, or skin barrier dysfunction-induced transepidermal water loss. The system consists of the interaction of multiple organs including renal urea recycling, hepato-muscular ureagenesis, and suppression of cardiovascular energy expenditure. Here, we determined the effect of pharmacological fluid loss induced by tolvaptan, a selective vasopressin V receptor antagonist, on water conservation.
View Article and Find Full Text PDFHyperosmolality is common in critically ill patients during body fluid volume reduction. It is unknown whether this is only a result of decreased total body water or an active osmole-producing mechanism similar to that found in aestivating animals, where muscle degradation increases urea levels to preserve water. We hypothesized that fluid volume reduction in critically ill patients contributes to a shift from ionic to organic osmolytes similar to mechanisms of aestivation.
View Article and Find Full Text PDFA link between high sodium chloride (salt) intake and the development of autoimmune diseases was previously reported. These earlier studies demonstrated exacerbation of experimental autoimmune encephalomyelitis and colitis by excess salt intake associated with Th17- and macrophage-mediated mechanisms. Little is known about the impact of dietary salt intake on experimental arthritides.
View Article and Find Full Text PDFAims: The number of cancer survivors with cardiovascular disease is increasing. However, the effect of cancer on body fluid regulation remains to be clarified. In this study, we evaluated body osmolyte and water imbalance in rats with hepatocellular carcinoma.
View Article and Find Full Text PDFCell based immunotherapy is rapidly emerging as a promising cancer treatment. A modest increase in salt (sodium chloride) concentration in immune cell cultures is known to induce inflammatory phenotypic differentiation. In our current study, we analyzed the ability of salt treatment to induce ex vivo expansion of tumor-primed CD4 (cluster of differentiation 4)+T cells to an effector phenotype.
View Article and Find Full Text PDFAim: Recent evidence suggests that arterial hypertension could be alternatively explained as a physiological adaptation response to water shortage, termed aestivation, which relies on complex multi-organ metabolic adjustments to prevent dehydration. Here, we tested the hypothesis that chronic water loss across diseased skin leads to similar adaptive water conservation responses as observed in experimental renal failure or high salt diet.
Methods: We studied mice with keratinocyte-specific overexpression of IL-17A which develop severe psoriasis-like skin disease.
Aim: We have reported earlier that a high salt intake triggered an aestivation-like natriuretic-ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure.
Methods: In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure.
Dietary salt uptake and inflammation promote sodium accumulation in tissues, thereby modulating cells like macrophages and fibroblasts. Previous studies showed salt effects on periodontal ligament fibroblasts and on bone metabolism by expression of nuclear factor of activated T-cells-5 (NFAT-5). Here, we investigated the impact of salt and NFAT-5 on osteoclast activity and orthodontic tooth movement (OTM).
View Article and Find Full Text PDFBackground: Tissue sodium content in patients on maintenance hemodialysis (MHD) and peritoneal dialysis (PD) were previously explored using 23Sodium magnetic resonance imaging (23NaMRI). Larger studies would provide a better understanding of sodium stores in patients on dialysis as well as the factors influencing this sodium accumulation.
Methods: In this cross-sectional study, we quantified the calf muscle and skin sodium content in 162 subjects (10 PD, 33 MHD patients, and 119 controls) using 23NaMRI.
Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water.
View Article and Find Full Text PDF