The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The acquisition of multimodal magnetic resonance-based brain development data is central to the study's core protocol. However, application of Magnetic Resonance Imaging (MRI) methods in this population is complicated by technical challenges and difficulties of imaging in early life.
View Article and Find Full Text PDFPurpose: To develop a robust 3D ultrashort-TE (UTE) protocol that can reproducibly provide high-quality images, assessed by the ability to yield clinically diagnostic images, and is suitable for clinical translation.
Theory And Methods: Building on previous work, a UTE sampled with Fermat looped orthogonally encoded trajectories (FLORET) was chosen as a starting point due to its shorter, clinically reasonable scan times. Modifications to previous FLORET implementations included gradient waveform frequency limitations, a new trajectory ordering scheme, a balanced SSFP implementation, fast gradient spoiling, and full inline reconstruction.
Aging is associated with declines in mitochondrial efficiency and energy production which directly impacts the availability of adenosine triphosphate (ATP), which contains high energy phosphates critical for a variety of cellular functions. Previous phosphorous magnetic resonance spectroscopy (P MRS) studies demonstrate cerebral ATP declines with age. The purpose of this study was to explore the functional relationships of frontal and posterior ATP levels with cognition in healthy aging.
View Article and Find Full Text PDFThe glymphatic system is a brain-wide network of perivascular pathways along which cerebrospinal fluid and interstitial fluid rapidly exchange, facilitating solute and waste clearance from the brain parenchyma. The characterization of this exchange process in humans has relied primarily upon serial magnetic resonance imaging following intrathecal gadolinium-based contrast agent injection. However, less invasive approaches are needed.
View Article and Find Full Text PDFIntroduction: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA.
View Article and Find Full Text PDFIn vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.
View Article and Find Full Text PDFExtended therapeutic application remains a significant issue in the use of stem cell therapies to treat ischemic stroke. Along these lines, neurological recovery in a rodent model of ischemic stroke was evaluated following implantation of human mesenchymal stem cell aggregates (hMSC-agg), labeled with micron-sized particles of iron oxide, directly into the lateral ventricle contralateral to the ischemic lesion hemisphere. Longitudinally, disease progression and response to hMSC-agg therapy were assessed by H and Na magnetic resonance imaging (MRI) at 21.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
The default mode network (DMN) is the most-prominent intrinsic connectivity network, serving as a key architecture of the brain's functional organization. Conversely, dysregulated DMN is characteristic of major neuropsychiatric disorders. However, the field still lacks mechanistic insights into the regulation of the DMN and effective interventions for DMN dysregulation.
View Article and Find Full Text PDFPurpose: Heating of gradient coils and passive shim components is a common cause of instability in the B field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.
Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors.
Background: The aim of this study was to compare contrast enhancement of Magnevist® (gadopentate dimeglumine (Mag)) to that of PEGylated Magnevist®-loaded liposomal nanoparticles (Mag-Lnps) in pancreatic cancer patient-derived xenograft (PDX) mouse model via magnetic resonance imaging (MRI).
Methods: Mag-Lnps formulated by thin-film hydration and extrusion was characterized for the particle size and zeta potential. A 21.
Purpose: To develop a method for fast chemical exchange saturation transfer (CEST) imaging.
Methods: The periodically rotated overlapping parallel lines enhanced reconstruction (PROPELLER) sampling scheme was introduced to shorten the acquisition time. Deep neural network was employed to reconstruct CEST contrast images.
Creatine is an important metabolite involved in muscle contraction. Administration of exogenous creatine (Cr) or phosphocreatine (PCr) has been used for improving exercise performance and protecting the heart during surgery including during valve replacements, coronary artery bypass grafting and repair of congenital heart defects. In this work we investigate whether it is possible to use chemical exchange saturation transfer (CEST) MRI to monitor uptake and clearance of exogenous creatine and phosphocreatine following supplementation.
View Article and Find Full Text PDFMRI leverages multiple modes of contrast to characterize stroke. High-magnetic-field systems enhance the performance of these MRI measurements. Previously, we have demonstrated that individually sodium and stem cell tracking metrics are enhanced at ultrahigh field in a rat model of stroke, and we have developed robust single-scan diffusion-weighted imaging approaches that utilize spatiotemporal encoding (SPEN) of the apparent diffusion coefficient (ADC) for these challenging field strengths.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) have been shown to enhance stroke lesion recovery by mediating inflammation and tissue repair through secretion of trophic factors. However, low cell survival and reduced primitive stem cell function of culture-expanded hMSCs are the major challenges limiting hMSC therapeutic efficacy in stroke treatment. In this study, we report the effects of short-term preconditioning of hMSCs via three-dimensional (3D) aggregation on stroke lesion recovery after intra-arterial (IA) transplantation of 3D aggregate-derived hMSCs (Agg-D hMSCs) in a transient middle cerebral artery occlusion (MCAO) stroke model.
View Article and Find Full Text PDFElectrical properties (EP), namely conductivity and permittivity, can provide endogenous contrast for tissue characterization. Using electrical property tomography (EPT), maps of EP can be generated from conventional MRI data. This report investigates the feasibility and accuracy of EPT at 21.
View Article and Find Full Text PDFIschemia, which involves decreased blood flow to a region and a corresponding deprivation of oxygen and nutrients, can be induced as a consequence of stroke or heart attack. A prevalent disease that affects many individuals worldwide, ischemic stroke results in functional and cognitive impairments, as neural cells in the brain receive inadequate nourishment and encounter inflammation and various other detrimental toxic factors that lead to their death. Given the scarce treatments for this disease in the clinic such as the administration of tissue plasminogen activator, which is only effective in a limited time window after the occurrence of stroke, it will be necessary to develop new strategies to ameliorate or prevent stroke-induced brain damage.
View Article and Find Full Text PDFObjective: Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of F MR that can be practically achieved when moving from 9.4 to 21.
View Article and Find Full Text PDFAccumulation of amyloid beta (Aβ) peptides in the cerebral vasculature, referred to as cerebral amyloid angiopathy (CAA), is widely observed in Alzheimer's disease (AD) brain and was shown to accelerate cognitive decline. There is no effective method for detecting cerebrovascular amyloid (CVA) and treat CAA. The targeted nanoparticles developed in this study effectively migrated from the blood flow to the vascular endothelium as determined by using quartz crystal microbalance with dissipation monitoring (QCM-D) technology.
View Article and Find Full Text PDFCocaine is a highly abused drug that causes psychiatric and neurological problems. Its entry into neurons could alter cell-biochemistry and contribute in the manifestation of early pathological symptoms. We have previously shown the acute cocaine effects in rat C6 astroglia-like cells and found that these cells were highly sensitive to cocaine in terms of manifesting certain pathologies known to underlie psychological disorders.
View Article and Find Full Text PDFThis study explores opportunities opened up by ultrahigh fields for in vivo saturation transfer brain magnetic resonance imaging experiments. Fast spin-echo images weighted by chemical exchange saturation transfer (CEST) effects were collected on Sprague-Dawley rats at 21.1 T, focusing on two neurological models.
View Article and Find Full Text PDFUnder the hypothesis that increased extracellular sodium induces sustained neuronal excitability with the onset and progression of migraine, this study evaluates dynamic in vivo Na fluxes in the brain of a preclinical rodent analogue of migraine. Ultra-high field Na magnetic resonance imaging (MRI) at 21.1 T has demonstrated potential to quantify sodium concentrations with good spatial and temporal resolution after the onset of central sensitization.
View Article and Find Full Text PDFAll-solid-state rechargeable batteries embody the promise for high energy density, increased stability, and improved safety. However, their success is impeded by high resistance for mass and charge transfer at electrode-electrolyte interfaces. Li deficiency has been proposed as a major culprit for interfacial resistance, yet experimental evidence is elusive due to the challenges associated with noninvasively probing the Li distribution in solid electrolytes.
View Article and Find Full Text PDFMeasuring cellular microstructures non-invasively and achieving specificity towards a cell-type population within an interrogated in vivo tissue, remains an outstanding challenge in brain research. Magnetic Resonance Spectroscopy (MRS) provides an opportunity to achieve cellular specificity via the spectral resolution of metabolites such as N-Acetylaspartate (NAA) and myo-Inositol (mI), which are considered neuronal and astrocytic markers, respectively. Yet the information typically obtained with MRS describes metabolic concentrations, diffusion coefficients or relaxation rates rather than microstructures.
View Article and Find Full Text PDFPurpose: This study evaluates biochemical imbalances in a rat model that reflects dysfunctional pathways in migraine. The high sensitivity and spectral dispersion available to H MRS at 21.1 T expands metabolic profiling in this migraine model to include lactate (Lac), taurine (Tau), aspartate, and Gly-a mixture of glycine, glutamine, and glutamate.
View Article and Find Full Text PDF