The aim of this study was to develop a fundamental understanding of the adsorption behavior of metal ions on cellulose surfaces using experimental techniques supported by computational modeling, taking Ag(I) as an example. Force interactions among three types of cellulose microspheres (native cellulose and its derivatives with sulfate and phosphate groups) and the silica surface in AgNO3 solution were studied with atomic force microscopy (AFM) using the colloidal probe technique. The adhesion force between phosphate cellulose microspheres (PCM) and the silica surface in the aqueous AgNO3 medium increased significantly with increasing pH while the adhesion force slightly decreased for sulfate cellulose microspheres (SCM), and no clear adhesion force was observed for native cellulose microspheres (CM).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2011
Under considerations in the current study are reactions of the type [Mn(LOH)(2)](2+) → [Mn(LO)](+) + LOH(2)(+), where the ligand LOH represents water or/and methanol. Preferential proton transfer reactions and loss of any ligand fragments are discussed in the light of ligand polarizability, dipole moment, dissociation energy, proton affinity, differences in ligand-ion ionization energy, and ion radii. The results indicate the proton affinity and dissociation energy of the O-H bond are more important for the overall proton transfer reaction than differences in the first ionization energy of the ligand and the second ionization energy of the metal ion.
View Article and Find Full Text PDFThe kinetic shift that exists between two competing unimolecular fragmentation processes has been used to establish whether or not gas-phase Mn(2+) exhibits preferential solvation when forming mixed clusters with water and methanol. Supported by molecular orbital calculations, these first results for a metal dication demonstrate that Mn(2+) prefers to be solvated by methanol in the primary solvation shell.
View Article and Find Full Text PDFThe structure and phase behavior of oppositely charged macroions in solution have been studied with Monte Carlo simulations using the primitive model where the macroions and small ions are described as charged hard spheres. Size and charge symmetric, size asymmetric, and charge asymmetric macroions at different electrostatic coupling strengths are considered, and the properties of the solutions have been examined using cluster size distribution functions, structure factors, and radial distribution functions. At increasing electrostatic coupling, the macroions form clusters and eventually the system displays a phase instability, in analogy to that of simple electrolyte solutions.
View Article and Find Full Text PDF