We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells.
View Article and Find Full Text PDFThe quantification of differences between two or more physiological states of a biological system is among the most important but also most challenging technical tasks in proteomics. In addition to the classical methods of differential protein gel or blot staining by dyes and fluorophores, mass-spectrometry-based quantification methods have gained increasing popularity over the past five years. Most of these methods employ differential stable isotope labeling to create a specific mass tag that can be recognized by a mass spectrometer and at the same time provide the basis for quantification.
View Article and Find Full Text PDFBackground: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers.
View Article and Find Full Text PDFSome of the earliest axon pathways to form in the vertebrate forebrain are established as commissural and retinal axons cross the midline of the diencephalon and telencephalon. To better understand axon guidance in the forebrain, we characterized the zebrafish belladonna (bel) mutation, which disrupts commissural and retinal axon guidance in the forebrain. Using a positional cloning strategy, we determined that the bel locus encodes zebrafish Lhx2, a lim-homeodomain transcription factor expressed in the brain, eye and fin buds.
View Article and Find Full Text PDFProtein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2005
Purpose: To characterize the quantitative properties of the optokinetic response (OKR) in zebrafish larvae as a tool to test visual performance in genetically modified larvae.
Methods: Horizontal OKR was triggered in 5-day-old zebrafish larvae by stimulation with projected computer-generated gratings of varying contrast, angular velocity, temporal and spatial frequency, and brightness. Eye movements were analyzed by a custom-made eye tracker based on image analysis.
Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference.
View Article and Find Full Text PDFMost cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae.
View Article and Find Full Text PDF