Publications by authors named "Jens R Wendland"

Article Synopsis
  • Obsessive-compulsive disorder (OCD) affects about 1% of people and has a strong genetic component, but previous studies have not fully explained its genetic causes or biological mechanisms.
  • A large genome-wide association study (GWAS) analyzed data from over 53,000 OCD cases and over 2 million control participants, identifying 30 significant genetic markers related to OCD and suggesting a 6.7% heritability from SNPs.
  • The research also found 249 candidate risk genes linked to OCD, particularly in specific brain regions, and showed genetic correlations with various psychiatric disorders, laying the groundwork for further studies and potential treatments.
View Article and Find Full Text PDF

Several attempts have been made to enhance N-methyl-D-aspartate (NMDA) receptor function in schizophrenia, but they have yielded mixed results. Luvadaxistat, a D-amino acid oxidase (DAAO) inhibitor that increases the glutamate co-agonist D-serine levels, is being developed for the treatment of cognitive impairment associated with schizophrenia. We conducted a biomarker study in patients, assessing several endpoints related to physiological outcomes of NMDA receptor modulation to determine whether luvadaxistat affects neural circuitry biomarkers relevant to NMDA receptor function and schizophrenia.

View Article and Find Full Text PDF

Aims: Dysregulation of histone methylation epigenetic marks may result in intellectual and developmental disability, as seen in Kabuki syndrome. Animal data suggest that increasing histone methylation by inhibiting lysine-specific demethylase 1A (LSD1) may improve cognitive outcomes in a model of Kabuki syndrome. TAK-418 is a novel LSD1 inhibitor, developed as a potential therapeutic agent for central nervous system disorders such as Kabuki syndrome.

View Article and Find Full Text PDF

Obsessive compulsive disorder (OCD) is a heterogeneous psychiatric disorder affecting 1%-3% of the population worldwide. About half of OCD afflicted individuals do not respond to currently available pharmacotherapy, which is mainly based on serotonin reuptake inhibition. Therefore, there is a critical need to search novel and improved therapeutic targets to treat this devastating disorder.

View Article and Find Full Text PDF

The original version of this Article contained an error in the spelling of the author Anna K Radke, which was incorrectly given as Anna R Radke. This has now been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a severe, chronic neuropsychiatric disorder with a strong genetic component. The SLC1A1 gene encoding the neuronal glutamate transporter EAAT3 has been proposed as a candidate gene for this disorder. Gene variants affecting SLC1A1 expression in human brain tissue have been associated with OCD.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the genetic overlap between 25 brain disorders using data from over 1.2 million individuals, finding that psychiatric disorders share more genetic risk compared to neurological disorders, which seem more distinct.
  • The research identified significant relationships between these disorders and various cognitive measures, suggesting shared underlying traits.
  • Simulations were conducted to understand how factors like sample size and diagnosis accuracy influence genetic correlations, emphasizing the role of common genetic variations in the risk of brain disorders.
View Article and Find Full Text PDF

Background: Major depressive disorder (MDD) has a high personal and socio-economic burden and >60% of patients fail to achieve remission with the first antidepressant. The biological mechanisms behind antidepressant response are only partially known but genetic factors play a relevant role. A combined predictor across genetic variants may be useful to investigate this complex trait.

View Article and Find Full Text PDF

Despite strong evidence supporting the heritability of major depressive disorder (MDD), previous genome-wide studies were unable to identify risk loci among individuals of European descent. We used self-report data from 75,607 individuals reporting clinical diagnosis of depression and 231,747 individuals reporting no history of depression through 23andMe and carried out meta-analysis of these results with published MDD genome-wide association study results. We identified five independent variants from four regions associated with self-report of clinical diagnosis or treatment for depression.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified several common variants associated with bipolar disorder (BD), but the biological meaning of these findings remains unclear. Integrative genomics-the integration of GWAS signals with gene expression data-may illuminate genes and gene networks that have key roles in the pathogenesis of BD. We applied weighted gene co-expression network analysis (WGCNA), which exploits patterns of co-expression among genes, to brain transcriptome data obtained by sequencing of poly-A RNA derived from postmortem dorsolateral prefrontal cortex from people with BD, along with age- and sex-matched controls.

View Article and Find Full Text PDF

Brain disorders remain one of the defining challenges of modern medicine and among the most poorly served with new therapeutics. Advances in human neurogenetics have begun to shed light on the genomic architecture of complex diseases of mood, cognition, brain development, and neurodegeneration. From genome-wide association studies to rare variants, these findings hold promise for defining the pathogenesis of brain disorders that have resisted simple molecular description.

View Article and Find Full Text PDF
Article Synopsis
  • Human genetics can help scientists find new drugs, but it's not used much in brain research.
  • Recent studies have found strong genetic links to schizophrenia, which could lead to new drug ideas.
  • The authors suggest a way to use human genetics in discovering new brain drugs.
View Article and Find Full Text PDF

Toll-like receptors (TLRs) play a key role in innate immunity. Apart from their function in host defense, dysregulation in TLR signalling can confer risk to autoimmune diseases, septic shock or cancer. Here we report genetic variants and transcripts that are active only during TLR signalling and contribute to interindividual differences in immune response.

View Article and Find Full Text PDF

Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD.

View Article and Find Full Text PDF

Despite compelling evidence for major genetic contributions to the etiology of obsessive-compulsive disorder (OCD), few genetic variants have been consistently associated with this debilitating illness. Molecular genetic studies in children and adolescents with OCD are of particular interest, since early onset of the disease has been observed to be associated with increased familiality. We replicate here for the first time in early-onset OCD patients, a previously reported association of OCD with the common gain-of-function LA allele at the serotonin transporter linked polymorphic region known as 5-HTTLPR in a collection of parent-offspring trios.

View Article and Find Full Text PDF

Objective: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date.

Method: The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls.

View Article and Find Full Text PDF

The high heterogeneity of response to antidepressant treatment in major depressive disorder (MDD) makes individual treatment outcomes currently unpredictable. It has been suggested that resistance to antidepressant treatment might be due to undiagnosed bipolar disorder or bipolar spectrum features. Here, we investigate the relationship between genetic susceptibility for bipolar disorder and response to treatment with antidepressants in MDD.

View Article and Find Full Text PDF

The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.

View Article and Find Full Text PDF

To evaluate the hypothesis that functionally over-expressing alleles of the serotonin transporter (SERT) gene (solute carrier family 6, member 4, SLC6A4) are present in Tourette's disorder (TD), just as we previously observed in obsessive compulsive disorder (OCD), we evaluated TD probands (N = 151) and controls (N = 858). We genotyped the refined SERT-linked polymorphic region 5-HTTLPR/rs25531 and the associated rs25532 variant in the SLC6A4 promoter plus the rare coding variant SERT isoleucine-to-valine at position 425 (I425V). The higher expressing 5-HTTLPR/rs25531 LA allele was more prevalent in TD probands than in controls (χ(2)  = 5.

View Article and Find Full Text PDF

Individuals with obsessive-compulsive disorder (OCD) have also been shown to have comorbid lifetime diagnoses of major depressive disorder (MDD; rates greater than 70%), bipolar disorder (rates greater than 10%) and other anxiety disorders (e.g. panic disorder, post-traumatic stress disorder (PTSD)).

View Article and Find Full Text PDF

The recent finding that the neuronal cadherin gene CDH2 confers a highly significant risk for canine compulsive disorder led us to investigate whether missense variants within the human ortholog CDH2 are associated with altered susceptibility to obsessive-compulsive disorder (OCD), Tourette disorder (TD) and related disorders. Exon resequencing of CDH2 in 320 individuals identified four non-synonymous single-nucleotide variants, which were subsequently genotyped in OCD probands, Tourette disorder probands and relatives, and healthy controls (total N=1161). None of the four variants was significantly associated with either OCD or TD.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly.

View Article and Find Full Text PDF

Background: Pharmacogenetic studies aiming to personalize the treatment of depression are based on the assumption that response to antidepressants is a heritable trait, but there is no compelling evidence to support this.

Methods: We estimate the contribution of common genetic variation to antidepressant response with Genome-Wide Complex Trait Analysis in a combined sample of 2799 antidepressant-treated subjects with major depressive disorder and genome-wide genotype data.

Results: We find that common genetic variants explain 42% (SE = .

View Article and Find Full Text PDF

Background: It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way.

Methods And Findings: The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study).

View Article and Find Full Text PDF

The serotonin transporter (SERT) is a key regulatory molecule in serotonergic transmission implicated in numerous biological processes relevant to human disorders. Recently, it was shown that SERT expression is controlled by miR-16 in mouse brain. Here, we show that SERT expression is regulated additionally by miR-15a as well as miR-16 in human and rat tissues.

View Article and Find Full Text PDF