It is shown how to overcome a new missing data problem in survival analysis. Iterative nonparametric techniques are utilized and the missing data information is both estimated and used for further estimation in each iterative step. Theory is developed and a good finite sample performance is illustrated by simulations.
View Article and Find Full Text PDFMost automobile insurance databases contain a large number of policyholders with zero claims. This high frequency of zeros may reflect the fact that some insureds make little use of their vehicle, or that they do not wish to make a claim for small accidents in order to avoid an increase in their premium, but it might also be because of good driving. We analyze information on exposure to risk and driving habits using telematics data from a pay-as-you-drive sample of insureds.
View Article and Find Full Text PDFBackground: It is of considerable interest to forecast the future burden of mesothelioma mortality. Data on deaths are available, whereas no measure of asbestos exposure is available.
Methods: We compare two Poisson models: a response-only model with an age-cohort specification and a multinomial model with epidemiologically motivated frequencies.
The impact of administrative costs on the distribution of terminal wealth is approximated using a simple formula applicable to many investment situations. We show that the reduction in median returns attributable to administrative fees is usually at least twice the amount of the administrative costs charged for most investment funds, when considering a risk-adjustment correction over a reasonably long-term time horizon. The example we present covers a number of standard cases and can be applied to passive investments, mutual funds, and hedge funds.
View Article and Find Full Text PDFWe focus on automatic strategies to optimize life cycle savings and investment. Classical optimal savings theory establishes that, given the level of risk aversion, a saver would keep the same relative amount invested in risky assets at any given time. We show that, when optimizing lifecycle investment, performance and risk assessment have to take into account the investor's risk aversion and the maximum amount the investor could lose, simultaneously.
View Article and Find Full Text PDF